Lecture 1: Introduction and Overview

CSCI 700 – Algorithms 1
Fall 2009
What is an algorithm?

- A high level description of a process.
- Based on some input, an algorithm describes a method to generate output.
- An algorithm should solve some problem – captured by the input/output relationship.
Example algorithm

- **Problem:** find the index of an element in an array
- **Input:** the array, A, and the element, \(x \)
- **Output:** the index in A of element \(x \)

Method

```plaintext
function find(x, A)
    i « 0
    while i < size(A)
        if A[i] = x
            return i
        end if
        i « i + 1
    end while
end
```
Pseudocode

- Pseudocode allows you to describe an algorithm without the syntax and semantics of a specific programming language.
- Pseudocode can gloss over implementational details.
 - Pseudocode can include plain English sentences or phrases along with code.
- It can be convenient to think of the relationship between pseudocode and code as similar to that between an “outline” and a paper.
Why study algorithms?

- Efficiency is fundamental to successful software engineering.
- Designing efficient algorithms is essential.
- Identifying inefficiencies is just as important.
- Studying algorithms will help you write efficient software.
- Also, it will get you a job.
Why search and sort?

- **Search** is fundamental to many IO operations – find a file, book a flight, find an article, Google.

- Structuring information can make retrieval more efficient.
- **Sorting** is an easy to understand linear structuring of information.

- Sorting and searching is a case study for the interaction between structure and retrieval.
- Graphs and graph functions, hashing etc. are all more complicated examples of this structure/retrieval relationship.
Review: Data Structures

- Three data structures that we will be relying on heavily in this course.
 - Arrays
 - Trees
 - Graphs
Review: Arrays

- **Arrays** are linear series of data.
- Operations we assume to be available:
 - \([i]\) – access the \(i\)th element of the array
 - size – how many elements are in the array
Review: Trees

- Binary **Trees** contain a set of Nodes. Each Node can have a left or right child.

- Operations we assume to be available:
 - parent – get the parent node
 - left – get the left child
 - right – get the right child
A **Graph** is defined by a set of Vertices or Nodes, and a set of Edges that connect pairs of Vertices.

Operations we assume to be available:

- `Vertex::adjacent_vertices`
- `Vertex::out_edges`
- `Vertex::in_edges`
- `Edge::source_vertex`
- `Edge::dest_vertex`

- Both Arrays and Trees can be viewed as special cases of Graph
Math we’ll use

- Exponents and Logarithms are used heavily. Log with no subscript is taken to be \(\log \) base 2.

\[x^n = y \]
\[n = \log_x y \]

\[\log xy = \log x + \log y \]
\[\log \frac{x}{y} = \log x - \log y \]
\[n \log x = \log x^n \]

- Summations

\[\sum_{i=1}^{n} 1 = n \]
\[\sum_{i=1}^{n} x = nx \]
\[\sum_{i=1}^{n} i = \frac{i(i + 1)}{2} \]

- Inductive proofs (tomorrow)
Example: Insertion Sort

- Sort an Array $A = [5, 2, 4, 6, 1, 3]$
- Take element $j=2$, move it to the right until $A[1..2]$ is correctly sorted.
- Take element $j=3$, move it to the left until $A[1..3]$ is sorted
- Continue up to $j=n$.
Insertion Sort

(a)
\[\begin{array}{cccccc}
5 & 2 & 4 & 6 & 1 & 3 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array} \]

(b)
\[\begin{array}{cccccc}
2 & 5 & 4 & 6 & 1 & 3 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array} \]

(c)
\[\begin{array}{cccccc}
2 & 4 & 5 & 6 & 1 & 3 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array} \]

(d)
\[\begin{array}{cccccc}
2 & 4 & 5 & 6 & 1 & 3 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array} \]

(e)
\[\begin{array}{cccccc}
1 & 2 & 4 & 5 & 6 & 3 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array} \]

(f)
\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array} \]
function insertionSort(A)
 for i « 2 to size(A) do
 key « A[j]
 i « j - 1
 while i > 0 and A[i] > key do
 i « i - 1
 end while
 A[i + 1] « key
 end for
end
Insertion Sort

function insertionSort(A)
 for i = 2 to size(A) do
 key = A[j]
 i = j - 1
 while i > 0 and A[i] > key do
 A[i + 1] = A[i]
 i = i - 1
 end while
 A[i + 1] = key
 end for
end
Insertion Sort

function insertionSort(A)
 for i « 2 to size(A) do
 key « A[j]
 i « j - 1
 while i > 0 and A[i] > key do
 i « i - 1
 end while
 A[i + 1] « key
 end for
end

• Total Runtime = $n + n - 1 + n - 1 + n - 1 + \sum_{j=2}^{n} j + \sum_{j=2}^{n} (j - 1) + \sum_{j=2}^{n} (j - 1) + n - 1$
Insertion Sort

• Total runtime =

\[
\frac{n(n + 1)}{2} - 1 + 2\left(\frac{n(n - 1)}{2}\right) + 5n - 4
\]

\[
\frac{n^2 + n}{2} - 1 + n^2 - n + 5n - 4
\]

\[
\frac{3}{2}n^2 + \frac{9}{2}n - 5
\]

• Insertion sort has “quadratic runtime” or \(\Theta(n^2)\)
Correctness of Insertion Sort

- We show insertion sort is correct using a construct called a Loop Invariant.
- Three properties of a Loop Invariant for an algorithm to be considered correct.
 1. **Initialization** – It is true at the start of the loop.
 2. **Maintenance** – It is true at the end of the loop.
 3. **Termination** – When the loop terminates, the Loop Invariant should show that the algorithm is correct.
Insertion Sort Loop Invariant

- **Loop Invariant:** At the start of each for loop iteration,

```plaintext
function insertionSort(A)
    for i « 2 to size(A) do
        key « A[j]
        i « j - 1
        while i > 0 and A[i] > key do
            i « i - 1
        end while
        A[i + 1] « key
    end for
end
```
Insertion Sort Loop Invariant

- **Loop Invariant:** At the start of each for loop iteration, \(A[1..j-1] \) contains the items initially in \(A[1..j-1] \) but in sorted order.

- **Initialization:** When \(j=2 \), the subarray \(A[1..j-1]=A[1..1]=A[1] \) only contains one element, so it is sorted.
Insertion Sort Loop Invariant

- **Loop Invariant:** At the start of each for loop iteration, $A[1..j-1]$ contains the items initially in $A[1..j-1]$ but in sorted order.

- **Maintenance:** The body of the for loop moves $A[j-1]$ down to $A[1]$ one position to the right, until the correct position for $A[j]$ is found. At which point $A[j]$ is inserted.

 - Formally, we need to show that at the point where $A[j]$ is inserted A contains only elements less than or equal to $A[j]$ to the left, and only elements greater than $A[j]$ to the right.
Insertion Sort Loop Invariant

- **Loop Invariant:** At the start of each for loop iteration, A[1..j-1] contains the items initially in A[1..j-1] but in sorted order.

- **Termination:** The loop ends when \(j = n + 1 \). Therefore, A[1..n] contains the items initially in A[1..n] but in sorted order. Thus, the entire array is sorted.
Class Policies and Course Overview

- Course Website
Textbook

Bye.

• Next time:
 • Asymptotic Notation
 • Recursion
 • Inductive Proofs.

• Next Class (9/3):
 • Homework 1: Demographic Information Due.
 • Read Section 3.1