Problem 1) (10 points) Show that if $T(n) = 6n^4 + 5n^3 + n^2 + 6$, $T(n) = \Theta(n^4)$

Problem 2) (20 points) Based on Corman, et al. Problem 3-3a. Ordering by asymptotic growth rates. Rank the following function by order of growth; that is, find an arrangement of g_1, g_2, \ldots, g_{15} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{14} = \Omega(g_{15})$. Partition your list into equivalence classes such that $f(n)$ and $g(n)$ are in the same class if and only if $f_n = \Theta(g(n))$.

<table>
<thead>
<tr>
<th>n^4</th>
<th>$\sum_{i=1}^{n} 1$</th>
<th>$\log \log n$</th>
<th>2009</th>
<th>$\sum_{i=1}^{n} i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
<td>\sqrt{n}</td>
<td>$\log n$</td>
<td>n^2</td>
<td>$n \log n$</td>
</tr>
<tr>
<td>n^n</td>
<td>$\sum_{i=1}^{n} \frac{1}{i}$</td>
<td>$n!$</td>
<td>e^n</td>
<td>n</td>
</tr>
</tbody>
</table>

Problem 3) Assume an input size of n. Both Algorithms A and B perform the same function. Algorithm A has a runtime of $f(n)$, and Algorithm B has a runtime of $g(n)$. If $f(n) = \Omega(g(n))$ then, for sufficiently large values of n, Algorithm B should be preferred, all else being equal. However, for small values of n this is not always true. For some small inputs, Algorithm A will produce faster runtimes. In this problem, you are asked to identify the “sufficiently large” integral input size k where $f(n) > g(n)$ for all values of n such that $n > k$. If $f(n) \neq \Omega(g(n))$ show why not.

3a. (5 points) $f(n) = n \ g(n) = 64\sqrt{n}$

3b. (5 points) $f(n) = n! \ g(n) = 256n^5 + 128n^2 - 16n + 1024$

3c. (5 points) $f(n) = \frac{1}{1023}n \ g(n) = n \log 16n$

3d. (5 points) $f(n) = n^2 \ g(n) = \sum_{i=1}^{n} 2i + 1$
Problem 4) (25 points) Let S_n be a sequence of numbers for all $n \geq 0$. $S_0 = 0$. Let $S_n = 2S_{n-1} + 1$ for all $n > 0$. Prove by induction that $S_n = 2^n - 1$ for all values of $n \geq 0$.

Problem 5) Based on Corman Problem 2-3. Horner’s rule for computing polynomials.

The following code fragment implements Horner’s rule for evaluating a polynomial

$$
P(x) = y = \sum_{k=0}^{n} a_k x^k
$$

$$
= a_0 + x(a_1 + x(a_2 + \ldots + x(a_{n-1} + xa_n) \ldots)),
$$

given the coefficients a_0, a_1, \ldots, a_n and a value for x:

1: $y \leftarrow 0$
2: $i \leftarrow n$
3: while $i \geq 0$ do
4: $y \leftarrow a_i + x \cdot y$
5: $i \leftarrow i - 1$
6: end while
7: return y

5a. (10 points) What is the asymptotic running time of this code fragment for Horner’s rule? Show the derivation.

5b. (15 points) Prove that the following is a loop invariant for the while loop in lines 3-5,

$$
y = \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k
$$

Interpret a summation with no terms as equalling 0. Your proof should follow the structure of the loop invariant proof presented in Corman section 2.1 and should show that, at termination, $y = \sum_{k=0}^{n} a_k x^k$.