Lecture 20: Minimum Spanning Trees
CSCI 700 - Algorithms I

Andrew Rosenberg

November 24, 2009
Today

- Minimum Spanning Trees: Kruskal’s Algorithm
- Path Lengths using Adjacency Matrices
Recall, Prim’s Algorithm to construct a Minimum Spanning Tree

- Pick a starting node
- Extend the MST along the shortest edge connecting an included node to an excluded node.
- Continue until every node is in the MST.
Kruskal’s algorithm also identifies Minimum Spanning Trees.

- Identify the lowest weight edge \((u, v)\).
- Add it to the MST if \((u, v)\) does not create a cycle.
Kruskal’s Algorithm Example

The image shows a graph with labeled vertices (a, b, c, d, e, f, g, h, i) and weighted edges. The edges between the vertices are shown with weights as follows:

- a to b: 1
- b to c: 5
- c to d: 3
- c to e: 3
- e to d: 2
- e to f: 3
- f to g: 7
- g to h: 1
- f to i: 1

The graph is a representation of the edges used in the Kruskal’s Algorithm example.
Kruskal’s Algorithm Example
Kruskal’s Algorithm Example

The image shows a graph with vertices labeled a, b, c, d, e, f, g, h, and i. The edges are labeled with their weights as follows:

- Edge ab: weight 1
- Edge bc: weight 2
- Edge cd: weight 3
- Edge ce: weight 3
- Edge de: weight 3
- Edge ef: weight 3
- Edge fg: weight 1
- Edge gh: weight 1
- Edge hi: weight 2

The graph is colored with blue edges indicating the selected edges in the Kruskal’s Algorithm.
Kruskal’s Algorithm Example
Kruskal’s Algorithm Example
Kruskal’s Algorithm Example

The diagram illustrates a graph with nodes labeled a, b, c, d, e, f, g, h, and i, and edges connecting them with weights. The edges are as follows:

- Edge from a to b with weight 1
- Edge from b to c with weight 2
- Edge from c to d with weight 5
- Edge from c to e with weight 3
- Edge from e to f with weight 3
- Edge from f to g with weight 3
- Edge from g to h with weight 1
- Edge from h to i with weight 2

The algorithm proceeds by selecting the edge with the smallest weight that does not form a cycle. In this case, the edges selected are:

- a to b
- c to e
- f to g

These edges form a minimum spanning tree of the graph.
Kruskal’s Algorithm

MST-Kruskal(G,w)

\[A \leftarrow \emptyset \]
\[\text{for } v \in V \text{ do} \]
\[\quad \text{Make-Set}(v) \]
\[\text{end for} \]
\[\text{sort}(E,w) \quad // \text{Sort the edges in } E \text{ by weight } w \]
\[\text{for } (u, v) \in E \text{ do} \]
\[\quad \text{if } \text{Find-Set}(u) = \text{Find-Set}(v) \text{ then} \]
\[\quad \quad A \leftarrow A \cup (u, v) \]
\[\quad \quad \text{Union}(u,v) \]
\[\quad \text{end if} \]
\[\text{end for} \]
\[\text{return } A \]
Using Adjacency Matrices to calculate path length

<table>
<thead>
<tr>
<th>Source</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

- D → A → C
- D → A → E
- B → A → C
- B → A → E
- E → A → C
- E → A → D
Adjacency Matrix cell M_{uv} is 1 if u and v are adjacent.

Therefore the adjacency matrix, M, contains a count of the number of paths of length 1 between u and v.

Claim: M^d contains the number of paths of length d between u and v.
How do we multiply matrices?

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \times \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
= \begin{pmatrix}
a^2 + cb & ba + db \\
ac + cd & cb + d^2
\end{pmatrix}
\]
What does this mean when multiply an adjacency matrix to itself?

\[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
=
\begin{pmatrix}
 N(A \rightarrow A) & N(A \rightarrow B) \\
 N(B \rightarrow A) & N(B \rightarrow B)
\end{pmatrix}
\]
What does this mean when multiply an adjacency matrix to itself?

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
= \begin{pmatrix}
N(A \rightarrow A) & N(A \rightarrow B) \\
N(B \rightarrow A) & N(B \rightarrow B)
\end{pmatrix}
\]

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\ast
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
= \begin{pmatrix}
a^2 + cb & ba + db \\
ac + cd & cb + d^2
\end{pmatrix}
\]
Path length with Matrix Multiplication

What does this mean when Multiply an adjacency matrix to itself?

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
= \begin{pmatrix}
N(A \rightarrow A) & N(A \rightarrow B) \\
N(B \rightarrow A) & N(B \rightarrow B)
\end{pmatrix}
\]

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\ast
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
= \begin{pmatrix}
a^2 + cb & ba + db \\
ac + cd & cb + d^2
\end{pmatrix}
\]

\[
\begin{pmatrix}
N(A, A)^2 + N(A, B)N(B, A) & N(A, B)N(A, A) + N(A, B)N(B, B) \\
N(B, A)N(A, A) + N(B, B)N(B, A) & N(A, B)N(B, A) + N(B, B)^2
\end{pmatrix}
\]
Using Adjacency Matrices to calculate path length

\[M = \begin{array}{c|ccccc}
\text{SOURCE} & \text{A} & \text{B} & \text{C} & \text{D} & \text{E} \\
\hline
\text{A} & 0 & 1 & 0 & 1 & 0 \\
\text{B} & 0 & 0 & 1 & 0 & 0 \\
\text{C} & 1 & 0 & 0 & 0 & 0 \\
\text{D} & 0 & 0 & 0 & 0 & 1 \\
\text{E} & 1 & 0 & 0 & 0 & 0 \\
\end{array} \]
Using Adjacency Matrices to calculate path length

\[M^2 = \]

<table>
<thead>
<tr>
<th>Source</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Source} & \quad \text{Destination} \\
A & \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \\
B & \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \\
C & \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \\
D & \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \\
E & \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \\
\end{align*}
\]
Using Adjacency Matrices to calculate path length

\[M^3 = \begin{array}{cccccc}
A & B & C & D & E \\
\hline
A & 2 & 0 & 0 & 0 & 0 \\
B & 0 & 1 & 0 & 1 & 0 \\
C & 0 & 0 & 1 & 0 & 1 \\
D & 0 & 1 & 0 & 1 & 0 \\
E & 0 & 0 & 1 & 0 & 1 \\
\end{array} \]
Bye

- Next time (11/24)
 - Hashing