Lecture 24: Final Review
CSCI 700 - Algorithms I

Andrew Rosenberg

December 10, 2009
Last Time

- Incomplete discussion of NP-Completeness
The Final Exam is **cumulative** with a focus on material from the second half of the semester.

First half:
- Logarithms + Exponents
- Asymptotic Notation
- Recursion
- Inductive Proofs
- Sorting (Comparison, Linear-time)
- Binary Search Trees
- Heaps
- Balanced Trees
Operations on Streams of Data

- Running Mean, Standard Deviation.
- Mean/Std.Dev of last k points.
- Minimum/Maximum
- Selecting 1 element at random
- **Not** Selecting k elements at random
Optimization Algorithms

- Dynamic Programming
- Greedy Algorithms
Dynamic Programming

- Optimal Substructure
- Repeated Substructure
- Setting up a DP table for word problems
- Minimum Edit Distance (Levenshtein distance)
- Making Change
- Knights Moves
- Frog jumping
Greedy Algorithms

- Proving that a greedy choice leads to an optimal solution
 - Local Solution **must** be part of the Global Solution
- Fractional Knapsack
- Activity Selection

Case Study: Huffman Coding
- Constructing the Huffman Tree
- Calculating the average encoded size of each token
Graphs

- Traversal – BFS, DFS
- Shortest Paths – Dijkstra, Bellman-Ford
- Strongly Connected Components
- Minimum Spanning Trees – Prim’s, Kruskal’s
Hashing

- Definitions: Hash Table, Hash Function
- Chaining
- Handling collisions
Definitions: NP-Complete, NP-Hard, $P \neq NP$

Logic and structure of an NP-completeness proof (by reduction)

There will not be an NP-Completeness Proof on the exam.
Today

- HW 11 Due.
- Final Review
 - Final Exam is 2hrs long
 - Where: A103
 - When: 12/17 @ 6:15pm
Course Evaluations.

Next time (12/17)
 - Final Exam