Last Time

- Heaps
Homework 4 stats

- Mean: 93.92
- Stdev: 4.40
- Median: 95
Homework problem 1d.

- Solve the recurrence using the Master Theorem
- \(T(n) = 2T(\sqrt{n}) + n \)
Master Theorem

Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function and let $T(n)$ be defined on the non negative integers by the recurrence $T(n) = aT(n/b) + f(n)$. Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Review of the Master Theorem
Homework problem 1d.

- Solve the recurrence using the Master Theorem
- \(T(n) = 2T(\sqrt{n}) + n \)
- Step 1: identify \(a, b, \) and \(f(n) \)
Solve the recurrence using the Master Theorem

\[T(n) = 2T(\sqrt{n}) + n \]

Step 1: identify \(a, b, \) and \(f(n) \)

- \(b \) is not a constant \(> 1 \).
- The master theorem only applies to functions of the form:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]
Solve the recurrence using the Master Theorem

- $T(n) = 2T(\sqrt{n}) + n$
- Step 1: identify a, b, and $f(n)$
- b is not a constant > 1.
- The master theorem only applies to functions of the form:
- $T(n) = aT(\frac{n}{b}) + f(n)$
- Manipulate the form of the function.
Homework problem 1d.

- \(T(n) = 2T(\sqrt{n}) + n \)
- \(T(n) = 2T(n^{1/2}) + n \)
- Introduce a new variable, \(m = \log n \), \(n = 2^m \)
Homework problem 1d.

- \(T(n) = 2T(\sqrt{n}) + n \)
- \(T(n) = 2T(n^{1/2}) + n \)
- Introduce a new variable, \(m = \log n \), \(n = 2^m \)
- \(T(2^m) = 2T(2^{m^{1/2}}) + 2^m \)
- \(T(2^m) = 2T(2^{m/2}) + 2^m \)
Homework problem 1d.

- $T(n) = 2T(\sqrt{n}) + n$
- $T(n) = 2T(n^{1/2}) + n$
- Introduce a new variable, $m = \log n$, $n = 2^m$
- $T(2^m) = 2T(2^{m^{1/2}}) + 2^m$
- $T(2^m) = 2T(2^{m/2}) + 2^m$
- Introduce a new function $S(m) = T(2^m)$
- $S(m) = 2S(m/2) + 2^m$
Homework problem 1d.

- $T(n) = 2T(n^{1/2}) + n$
- $S(m) = 2S(m/2) + 2^m$
- Now the Master Theorem can be applied to $S(m)$
- $a = 2$, $b = 2$, $f(m) = 2^m$
- Compare 2^m to $m^{\log_a b}$
Homework problem 1d.

- \(T(n) = 2T(n^{1/2}) + n \)
- \(S(m) = 2S(m/2) + 2^m \)
- Now the Master Theorem can be applied to \(S(m) \)
- \(a = 2, \ b = 2, \ f(m) = 2^m \)
- Compare \(2^m \) to \(m^{\log_a b} \)
- \(f(m) = 2^m = \Omega(m^{\log_a b}) = \Omega(m^{\log_2 2}) = \Omega(m^1) = \Omega(m) \)
- Case 3) of the Master Theorem.
- \(S(m) = \Theta(2^m) \)
Homework problem 1d.

- \(T(n) = 2T(n^{1/2}) + n \)
- \(S(m) = 2S(m/2) + 2^m \)
- Now the Master Theorem can be applied to \(S(m) \)
- \(a = 2, \ b = 2, \ f(m) = 2^m \)
- Compare \(2^m \) to \(m^{\log_a b} \)
- \(f(m) = 2^m = \Omega(m^{\log_a b}) = \Omega(m^{\log_2 2}) = \Omega(m^1) = \Omega(m) \)
- Case 3) of the Master Theorem.
- \(S(m) = \Theta(2^m) \)
- \(T(n) = T(2^m) = S(m) = \Theta(2^m) = \Theta(2^{\log n}) = \Theta(n) \)
Heaps

- Heap Review
 - Equivalence between complete trees and arrays.
 - More detail on Heap Insert and Heap Increase Key
Representing a Heap as an Array

- The **Max heap property** allows compact representation of a heap as an array.
- \(\text{Parent}(i) = \lfloor i/2 \rfloor \)
- \(\text{Left}(i) = 2i \)
- \(\text{Right}(i) = 2i + 1 \)
Heap Example

A[i] 16 14 10 8 7 9 3 2 4 1

i 1 2 3 4 5 6 7 8 9 10
The **Max heap property** allows compact representation of a heap as an array.

- \(\text{PARENT}(i) = \lfloor i/2 \rfloor \)
- \(\text{LEFT}(i) = 2i \)
- \(\text{RIGHT}(i) = 2i + 1 \)
2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.
\begin{itemize}
 \item 2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.
 \item **Base case** $d = 1$ A tree of depth 1 has only a root. $2^0 = 1$.
\end{itemize}
2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.

Base case $d = 1$ A tree of depth 1 has only a root. $2^0 = 1$.

Inductive Step The maximum number of nodes at depth $d + 1$ arises when each node at d has the maximum number of children.
2^{d-1} is the maximum number of nodes in a binary tree at a given depth \(d \).

Base case \(d = 1 \) A tree of depth 1 has only a root. \(2^0 = 1 \).

Inductive Step The maximum number of nodes at depth \(d + 1 \) arises when each node at \(d \) has the maximum number of children.

The maximum number of children is 2. Thus, the maximum number of nodes at depth \(d + 1 \) is double the maximum number at depth \(d \).

The maximum at depth \(d \) is \(2^{d-1} \).

The maximum at depth \(d + 1 \) is \(2 \times 2^{d-1} = 2^{(d+1)-1} (= 2^d) \)
The maximum number of nodes in a tree of depth d is $2^d - 1$.
The maximum number of nodes in a tree of depth d is $2^d - 1$

Base Case A tree with depth $d = 1$ only has one node, a root. $2^d - 1 = 2^1 - 1 = 2 - 1 = 1$.
The maximum number of nodes in a tree of depth d is $2^d - 1$.

Base Case A tree with depth $d = 1$ only has one node, a root. $2^d - 1 = 2^1 - 1 = 2 - 1 = 1$.

Inductive Step The maximum number of nodes in a tree of depth $d + 1$ is the number of nodes in a tree of depth d plus the maximum number of nodes at depth $d + 1$.

Max nodes in a tree of depth d is $2^d - 1$

Max nodes at depth $d + 1$ is $2^{(d+1)-1} = 2^d$

$2^d + 2^d - 1 = 2 \times 2^d - 1 = 2^{d+1} - 1$
The nodes at any complete depth \(d \) can be uniquely indexed with the values between 1 and \(2^d - 1 \).

Base Case When \(d = 1 \) the tree has only a root. Thus the root is uniquely indexed by 1. \(2^{1-1} = 2^0 = 1 \) and \(2^1 - 1 = 2 - 1 = 1 \)
The nodes at any complete depth d can be uniquely indexed with the values between 1 and $2^d - 1$.

Base Case When $d = 1$ the tree has only a root. Thus the root is uniquely indexed by 1. $2^{1-1} = 2^0 = 1$ and $2^1 - 1 = 2 - 1 = 1$.

Inductive Step Assume all nodes at depths d or below are uniquely indexed between 1 and $2^d - 1$.

The $d + 1$ depth of the tree contains $2^{(d+1)-1} = 2^d$ nodes.

The range between $2^{(d+1)-1}$ and $2^{(d+1)} - 1$ contains 2^d indices.

$$2^{d+1} - 1 - 2^{(d+1)-1} + 1 = 2^{d+1} - 2^d = 2 \times 2^d - 2^d = 2^d$$

Therefore the range between 2^d and $2^{d+1} - 1$ can contain enough elements for depth $d + 1$ and does not overlap with the elements at lower depths.
Representing a Heap as an array

- Assuming we have a complete graph with \(N \) nodes, can we arrange the elements compactly in an \(N \) element array using the following relationships?
 - \(\text{Parent}(i) = \lfloor i/2 \rfloor \)
 - \(\text{Left}(i) = 2i \)
 - \(\text{Right}(i) = 2i + 1 \)

- Does \(j \) correspond to a node in the tree?
- Does \(j \) correspond to a unique node in the tree?
Does an index j in the range 1 and $2^d - 1$ correspond to a node in a complete tree? Assume not. If there exists an index j that does not correspond to a node. Therefore j is not $\text{LEFT}(i)$ nor $\text{RIGHT}(i)$ for all $1 \leq i \leq 2^d - 1$.

If $j = 1$ then j corresponds to the root.

Otherwise, assume without loss of generality that there exists i such that $2i \leq j$ and $i + 1$ such that $2(i + 1) \geq j$.

Therefore $2i \leq j \leq 2(i + 1)$.

Thus, j can be $2i$ in which case it is $\text{LEFT}(i)$

Thus, j can be $2i + 1$ in which case it is $\text{RIGHT}(i)$

Thus, j can be $2i + 2 = 2(i + 1)$ in which case it is $\text{LEFT}(i+1)$
Does an index \(j \) in the range 1 and \(2^d - 1 \) correspond to a unique node in a complete tree?

Assume not. If there exists an index \(j \) that corresponds to two nodes.

\(j \) must be the child of two different nodes, \(i \) and \(i' \) where \(i \neq i' \).

Both Left children. \(2i \neq 2i' \) if \(i \neq i' \).

Both Right children. \(2i + 1 \neq 2i' + 1 \) if \(i \neq i' \).

Note \(2i \) is even and \(2i + 1 \) is odd.

Therefore \(2i \neq 2i' + 1 \) for any integers \(i \) and \(i' \).
Heap Increase Key

HeapIncreaseKey(*A*, *i*, *key*)

\[A[i] \leftarrow key\]

while \(i > 1\) and \(A[\text{Parent}(i)] < A[i]\) do

\[
\text{swap } A[i] \leftrightarrow A[\text{Parent}(i)]
\]

\[
i \leftarrow \text{Parent}(i)
\]

end while

- \(O(\log n)\) - Heap traversal
Max Heap Insert

\[
\text{MaxHeapInsert}(A, \text{key})
\]

\[
\begin{align*}
 \text{size}(A) & \leftarrow \text{size}(A) + 1 \\
 A[\text{size}(A)] & \leftarrow -\infty \\
 \text{HeapIncreaseKey}(A, \text{size}(A), \text{key})
\end{align*}
\]

- \(O(\log n) \) - \(\text{HeapIncreaseKey}(A, i, \text{key}) \)
Bye

- Next time (10/8)
 - Balanced Binary Search Trees
- For Next Class
 - Homework 5 Due
 - Read 13.1, 13.2, 13.3, 13.4