Lecture 1: Introduction and Overview

CSCI 700 – Algorithms 1
Fall 2009
What is an algorithm?

- A high level description of a process.
- Based on some input, an algorithm describes a method to generate output.
- An algorithm should solve some problem – captured by the input/output relationship.
Example algorithm

- **Problem:** find the index of an element in an array
- **Input:** the array, A, and the element, x
- **Output:** the index in A of element x

Method

```
function find(x, A)
    i « 0
    while i < size(A)
        if A[i] = x
            return i
        end if
        i « i + 1
    end while
end
```
Pseudocode

• Pseudocode allows you to describe an algorithm without the syntax and semantics of a specific programming language.
• Pseudocode can gloss over implementational details.
 • Pseudocode can include plain English sentences or phrases along with code.
• It can be convenient to think of the relationship between pseudocode and code as similar to that between an “outline” and a paper.
Why study algorithms?

• Efficiency is fundamental to successful software engineering.

• Designing efficient algorithms is essential.
• Identifying inefficiencies is just as important.
• Studying algorithms will help you write efficient software.

• Also, it will get you a job.
Why search and sort?

- **Search** is fundamental to many IO operations – find a file, book a flight, find an article, Google.

- Structuring information can make retrieval more efficient.

- **Sorting** is an easy to understand linear structuring of information.

- Sorting and searching is a case study for the interaction between structure and retrieval.

- Graphs and graph functions, hashing etc. are all more complicated examples of this structure/retrieval relationship.
Review: Data Structures

• Three data structures that we will be relying on heavily in this course.
 • Arrays
 • Trees
 • Graphs
Review: Arrays

- **Arrays** are linear series of data.
- Operations we assume to be available:
 - \([i]\) – access the \(i\)th element of the array
 - \(\text{size}\) – how many elements are in the array
Review: Trees

• Binary Trees contain a set of Nodes. Each Node can have a left or right child.

• Operations we assume to be available:
 • parent – get the parent node
 • left – get the left child
 • right – get the right child
Review: Graphs

• A **Graph** is defined by a set of Vertices or Nodes, and a set of Edges that connect pairs of Vertices.

• Operations we assume to be available:
 • Vertex::adjacent_vertices
 • Vertex::out_edges
 • Vertex::in_edges
 • Edge::source_vertex
 • Edge::dest_vertex

• Both Arrays and Trees can be viewed as special cases of Graph
Math we’ll use

- Exponents and Logarithms are used heavily. Log with no subscript is taken to be log base 2.

\[
x^n = y \quad \log xy = \log x + \log y
\]
\[
n = \log_x y \quad \log \frac{x}{y} = \log x - \log y
\]
\[
n \log x = \log x^n
\]

- Summations

\[
\sum_{i=1}^{n} 1 = n \quad \sum_{i=1}^{n} x = nx \quad \sum_{i=1}^{n} i = \frac{i(i+1)}{2}
\]

- Inductive proofs (tomorrow)
Example: Insertion Sort

- Sort an Array $A = [5, 2, 4, 6, 1, 3]$
- Take element $j=2$, move it to the right until $A[1..2]$ is correctly sorted.
- Take element $j=3$, move it to the left until $A[1..3]$ is sorted
- Continue up to $j=n$.

Insertion Sort

Corman et al. p. 17
function insertionSort(A)
 for i = 2 to size(A) do
 key = A[j]
 i = j - 1
 while i > 0 and A[i] > key do
 A[i + 1] = A[i]
 i = i - 1
 end while
 A[i + 1] = key
 end for
end
function insertionSort(A)
 for i ← 2 to size(A) do
 key ← A[j]
 i ← j - 1
 while i > 0 and A[i] > key do
 A[i + 1] ← A[i]
 i ← i - 1
 end while
 A[i + 1] ← key
 end for
end
Insertion Sort

```plaintext
function insertionSort(A)
    for i « 2 to size(A) do
        key « A[j]
        i « j - 1
        while i > 0 and A[i] > key do
            i « i - 1
        end while
        A[i + 1] « key
    end for
end
```

- **Total Runtime =**

\[
\sum_{j=2}^{n} j + \sum_{j=2}^{n} (j-1) + \sum_{j=2}^{n} (j-1) + n - 1
\]
Insertion Sort

- Total runtime=

\[
\frac{n(n + 1)}{2} - 1 + 2\left(\frac{n(n - 1)}{2}\right) + 5n - 4 \\
\frac{n^2 + n}{2} - 1 + n^2 - n + 5n - 4 \\
\frac{3}{2}n^2 + \frac{9}{2}n - 5
\]

- Insertion sort has “quadratic runtime” or \(\Theta(n^2) \)
Correctness of Insertion Sort

• We show insertion sort is correct using a construct called a Loop Invariant.
• Three properties of a Loop Invariant for an algorithm to be considered correct.
 • **Initialization** – It is true at the start of the loop.
 • **Maintenance** – It is true at the end of the loop.
 • **Termination** – When the loop terminates, the Loop Invariant should show that the algorithm is correct.
• **Loop Invariant**: At the start of each for loop iteration, \(A[1..j-1] \) contains the items initially in \(A[1..j-1] \) but in sorted order.

```plaintext
function insertionSort(A)
    for i « 2 to size(A) do
        key « A[j]
        i « j - 1
        while i > 0 and A[i] > key do
            i « i - 1
        end while
        A[i + 1] « key
    end for
end
```
Insertion Sort Loop Invariant

- **Loop Invariant:** At the start of each for loop iteration, A[1..j-1] contains the items initially in A[1..j-1] but in sorted order.
- **Initialization:** When j=2, the subarray A[1..j-1] = A[1..1] = A[1] only contains one element, so it is sorted.
Insertion Sort Loop Invariant

• **Loop Invariant:** At the start of each for loop iteration, A[1..j-1] contains the items initially in A[1..j-1] but in sorted order.

• **Maintenance:** The body of the for loop moves A[j-1] down to A[1] one position to the right, until the correct position for A[j] is found. At which point A[j] is inserted.

• Formally, we need to show that at the point where A[j] is inserted A contains only elements less than or equal to A[j] to the left, and only elements greater than A[j] to the right.
Insertion Sort Loop Invariant

- **Loop Invariant:** At the start of each for loop iteration, A[1..j-1] contains the items initially in A [1..j-1] but in sorted order.

- **Termination:** The loop ends when j=n+1. Therefore, A[1..n] contains the items initially in A [1..n] but in sorted order. Thus, the entire array is sorted.
Class Policies and Course Overview

• Course Website
 • http://eniac.cs.qc.cuny.edu/andrew/csci700-10/syllabus.html
Textbook

 ISBN: 978-0262033848
Bye.

• Next time:
 • Asymptotic Notation
 • Recursion
 • Inductive Proofs.

• Next Class (9/2):
 • Homework 1: Demographic Information Due.
 • Read Section 3.1