Last Time

- Kruskal’s Algorithm to generate MSTs
- Path counting with matrix multiplication
Today

- Negative Cycles
- Graph Recap
Negative Cycles

A **negative cycle** is a cycle in a weighted graph whose total weight is negative.

Why are negative cycles problematic for most shortest path algorithm (like Dijkstra’s)?
What is the shortest path between a and e?

![Graph diagram]

Shortest path with Negative Weight edges
Path: a, b, c, e = 3
Path: $a,b,c,d,b,c,e = 2$
Path: a, b, c, d, b, c, d, b, c, e = 1
Shortest Path

Path: a, b, c, d, b, c, d, b, c, d, b, c, e = 0
Detecting Negative Cycles

Bellman-Ford(G,s)

for \(v \in V(G) \) do
\[d[v] = \infty; \text{parent}[v] = \emptyset \]
end for

for \(i = 1 \) to \(|V(G)| - 1\) do
for \((u, v) \in E(G) \) do
Relax(u,v)
end for
end for

for \((u, v) \in E(G) \) do
if \(d[v] > d[u] + w(u, v) \) then
return \text{FALSE}
end if
return \text{TRUE}
end for

Relax(u,v)

if \(d[v] > d[u] + w(u, v) \) then
\[d[v] = d[u] + w(u, v) \]
parent[v] = u
end if
Path-relaxation Property: If $p = [v_0, v_1, \ldots, v_k]$ is the shortest path from $s = v_0$ to v_k and the edges of p are relaxed in the order $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$, then $d[v_k] = \text{distance}(s, v_k)$. This property holds regardless of any other relaxation steps.
Claim: At the end of the first for loop of Bellman-Ford, if G contains no negative cycles, $d[v] = \text{distance}(s,v)$.

Proof: Let v be a vertex reachable from s. Let $p = [v_0 = s, v_1, \ldots, v_k = v]$ be an acyclic shortest path between s and v. Path p has at most $|V| - 1$ edges. Each of the $|V| - 1$ relaxes all edges $E(G)$. Thus, each edge (v_{i-1}, v_i) is relaxed in the ith iteration. By the path-relaxation property,

$$d[v] = d[v_k] = \text{distance}(s, v_k) = \text{distance}(s, v)$$
Claim: If G contains no negative cycles, Bellman-Ford returns True and \(d[v] = \text{distance}(s,v) \). If G contains a negative cycle reachable from \(s \), then algorithm returns False.

Proof: By the previous proof, at the end of the first for loop \(d[v] = \text{distance}(s,v) \).

At termination, we have for all edges \((u, v) \in E\)

\[
d[v] = \text{distance}(s, v) \\
\leq \text{distance}(s, u) + w(u, v) \\
= d[u] + w(u, v)
\]

So none of the tests return False.
Proof of Bellman-Ford

Suppose that G contains a negative cycle, $c = [v_0, v_1, \ldots, v_k]$. Thus, $0 > \sum_{i}^{k} w(v_{i-1}, v_i)$.

Assume not. Assume that Bellman-Ford returns True. Thus, $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$. If we sum around the cycle, we get

$$\sum_{i}^{k} d[v_i] \leq \sum_{i}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

$$\leq \sum_{i}^{k} d[v_{i-1}] + \sum_{i}^{k} w(v_{i-1}, v_i)$$

However, $\sum_{i}^{k} d[v_i] = \sum_{i}^{k} d[v_{i-1}]$. Thus

$$0 \leq \sum_{i}^{k} w(v_{i-1}, v_i)$$

Contradiction. Thus, Bellman-Ford returns False if G contains a negative cycle.
What can we do with Graphs?

- Search/Traversal (BFS, DFS)
- Shortest Paths (Dijkstra’s, Bellman-Ford)
- Minimum Spanning Trees (Kruskal’s, Prim’s)
- Cycle Detection (DFS)
- Sorting Vertices by discovery and finishing time
- Detection of Connected Components
Bye

- Next time (12/3)
 - Hashing