Last Time

- NP-completeness
Today

- Hashing
- https://apps.qc.cuny.edu/courseevaluation/
A dictionary supports (minimally) Insert, Search and Delete.

Today: Hash Tables – another dictionary data structure.
Limitations of arrays

- Comparison sort and comparison search on an open set is bound by $\Omega(n \log n)$.
- Counting sort showed that if we have a closed domain of data (size $O(n)$), we can sort in linear time, $O(n)$.
- We can `SEARCH` a closed domain (size $O(n)$) in constant time, $O(1)$.
Searching in Constant Time

- Given a domain of size $O(n)$, construct an $O(n)$ element T containing the elements in A.
- Write a `LOOKUP` function to map the elements of the domain to indices in T.
 - `LOOKUP` might be a case statement, an enumeration, or nested ifs depending on language support.
 - Regardless of implementation `LOOKUP` is $O(1)$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search(T, x)</td>
<td><code>return T[LOOKUP(x)]</code></td>
</tr>
<tr>
<td>Insert(T, x)</td>
<td>$T[LOOKUP(x)] \leftarrow x$</td>
</tr>
<tr>
<td>Delete(T, x)</td>
<td>$T[LOOKUP(x)] \leftarrow \emptyset$</td>
</tr>
</tbody>
</table>
Constructing a table T with size equal to the number of keys U you want to index might be impractical.

- Say, if you want to index any strings with less than 32k characters.
 - Minimally $32,000^{27}$
Introduction to Hashing

Constructing a table T with size equal to the number of keys U you want to index might be impractical.

- Say, if you want to index any strings with less than 32k characters.
 - Minimally $32,000^{27}$

The solution: Map an open set U onto a closed set K which is much smaller than U.

- This mapping is performed using a hash function.
 - Let $|K| = m$
 - $h : U \rightarrow \{0, 1, \ldots, m - 1\}$

Hashing allows for a dictionary with Insert, Delete and Search with expected runtimes of $O(1)$.
Hash Table

U (universe of keys)

K

k_1, k_2, k_3, k_4, k_5

T

0, $h(k_3)$, $h(k_1)$, $h(k_2)$, $h(k_5)$, $h(k_4)$, $m-1$
Using a **hash function**, we can store elements of an open set in a small data structure.

For example:

- `INSERT("Andrew")`
- `INSERT("Michael")`
- `INSERT("John")`
- `SEARCH("Michael") = "Michael"`
- `SEARCH("Sally") = ∅`
In practice, hash tables are used to store **key/value** pairs.

For example: Names (strings) are **keys**, Ages (integers) are **values**.

- **INSERT**(“Andrew”, 30)
- **INSERT**(“Michael”, 33)
- **INSERT**(“John”, 15)
- **SEARCH**(“Michael”) = 33
- **SEARCH**(“Sally”) = ∅
- **SEARCH**(“Andrew”) = 30
Hashing as an associative data structure

This allows a user to index a data structure by an element of an open set.

Arrays

Hash Tables

- $H["Andrew"] = 30$
- $H["Michael"] = 33$
- $H["John"] = 15$
Hashing
The catch

What’s the catch?
The catch

What’s the catch?

Collisions
Figure 11.2 Cormen
Since \(U \) is much larger than \(m \), the size of the hash table, there are multiple elements in \(U \) that have the same hash value \(h(k_1) = h(k_2) \):

- Pigeon hole principle: if \(n \) items are put into \(m \) pigeon holes with \(n > m \), then at least one pigeon hole must contain more than one item.
Problem: More than one key needs to occupy a single hash table entry.

Solution: Allow each hash table entry to hold more than one key.
Problem: More than one key needs to occupy a single hash table entry.

Solution: Allow each hash table entry to hold more than one key.

- Each element of the hash table is a list.
- **INSERT**(k, v):
 Insert v at the head of list $T[h(k)]$
- **SEARCH**(k):
 Search for an key k at the head of list $T[h(k)]$
- **DELETE**(k):
 Delete k from list $T[h(k)]$
Hash Table
Performance of a hash table with Chaining

How much space is required to store N elements in a hash table with m entries with chaining?
How much space is required to store N elements in a hash table with m entries with chaining?

What is the worst case runtime for INSERT, SEARCH and DELETE?
Performance of a hash table with Chaining

How much space is required to store N elements in a hash table with m entries with chaining?

What is the worst case runtime for Insert, Search and Delete?

The best case?
Performance of a hash table with Chaining

How much space is required to store N elements in a hash table with m entries with chaining?

What is the worst case runtime for \texttt{Insert}, \texttt{Search} and \texttt{Delete}?

The best case?

What makes the difference?
Performance of a hash table with Chaining

How much space is required to store \(N \) elements in a hash table with \(m \) entries with chaining?

What is the worst case runtime for \texttt{INSERT}, \texttt{SEARCH} and \texttt{DELETE}?

The best case?

What makes the difference?

Load factor: \(\alpha = \frac{n}{m} \)
Identifying a **good** hash function

Not all hash functions are equally good.

Let $s \in U$ be the set of all strings with $< 32k$ characters. Consider the following hash functions.

- $h : U \rightarrow 1$
Identifying a **good** hash function

Not all hash functions are equally good.

Let \(s \in U \) be the set of all strings with < 32k characters. Consider the following hash functions.

- \(h : U \rightarrow 1 \)
- \(h : U \rightarrow \text{int}(s[1]) \)

The more evenly distributed \(h(k) \) is the better.
Identifying a **good** hash function

Not all hash functions are equally good.

Let $s \in U$ be the set of all strings with $< 32k$ characters. Consider the following hash functions.

- $h : U \rightarrow 1$
- $h : U \rightarrow \text{int}(s[1])$
- $h : U \rightarrow \sum_{i}^{n} \text{int}(s[i])$

The more evenly distributed $h(k)$ is the better.
h(k) must be bound by m the size of the hash table.

How do we guarantee that?

Division Method $h(k) = k \mod m$

- As a rule of thumb, m is selected to be prime and far from a power of 2.
 - If $m = 2^p$, then the hash is just the lower p bits of k.
 - This is probably **not** evenly distributed.
Identifying a good size for a hash table

h(k) must be bound by \(m \) the size of the hash table.

How do we guarantee that?

Multiplication Method Choose a constant \(A \), such that \(0 < A < 1 \).

\[
h(k) = \lfloor m (kA \mod 1) \rfloor
\]

- \((kA \mod 1)\) - the fractional part of \(kA \).

The distribution is independent of \(m \). Allowing hash tables with sizes \(m = 2^p \).

- Knuth 1973 - The Art of Programming vol. 3:
 \(A \approx (\sqrt{5} - 1)/2 \) works reasonably well for most keys.

- There are other machine considerations that can be taken into account.
Bye

- Next time
 - Better Hashing