Last Time

- Introductory Hashing
Today

- Open Addressing Hashing
Recap

- Hash Tables allow us improved expected lookup and deletion
- Performance is dependent on the load factor $\alpha = nm$
- ...and a good hash function.
Chaining is a common and simple approach to avoiding collisions.
Chaining requires additional memory to store each pointer.

To store an integer, takes one 32 or 64 bits for the integer, and the same again for the pointer to the next one.

Can we do better?
Open Addressing stores the data in the hash table directly.

By eliminating the need for n pointers, the size of the hash table m can be increased to store $\frac{\text{sizeof}(A)}{n}$ more elements.

With the same amount of memory, the load factor, α is reduced.
Open addressing avoids collisions by storing the collision “chains” in the hash table itself.

This could be done explicitly, but the memory improvements will be lost.

Instead for each key, k, construct a **probe sequence**.

The probe sequence describes a permutation of every element in the hash table.

A new element will be inserted in to the earliest unoccupied index in the probe sequence.
Open addressing example

A = (0, 1, 2, 3)
B = (0, 2, 1, 3)
C = (1, 3, 0, 2)
D = (1, 2, 3, 0)
E = (3, 1, 2, 0)
Open addressing example

A = (0, 1, 2, 3)
B = (0, 2, 1, 3)
C = (1, 3, 0, 2)
D = (1, 2, 3, 0)
E = (3, 1, 2, 0)
Open addressing example

A = (0, 1, 2, 3)
B = (0, 2, 1, 3)
C = (1, 3, 0, 2)
D = (1, 2, 3, 0)
E = (3, 1, 2, 0)
Open addressing example

A = (0, 1, 2, 3)
B = (0, 2, 1, 3)
C = (1, 3, 0, 2)
D = (1, 2, 3, 0)
E = (3, 1, 2, 0)
Open addressing insertion

Hash-Insert(T,k)

\[
i = 0
\]
\[
\text{repeat}
\]
\[
j = h(k,i)
\]
\[
\text{if } T[j] == \text{NIL then}
\]
\[
T[j] = k
\]
\[
\text{return } j
\]
\[
\text{else}
\]
\[
i = i + 1
\]
\[
\text{end if}
\]
\[
\text{until } i == m
\]
Open addressing searching

```
Hash-Search(T, k)

i = 0
repeat
    j = h(k, i)
    if T[j] == k then
        return j
    end if
    i = i + 1
until T[j] == NIL or i == m
```
With chaining, deletion was easy. Just delete the element in the linked list.

With open addressing, to delete, replace the deleted element with a special tag `DELETED`.

However, then search will need to continue looking along a probe sequence passed `DELETED` entries.

In this case, the search time is independent on α. A hash table with few elements can take longer to find an element than a densely packed table, if many elements have been deleted.

If deletion is common, chaining is preferred.
A probe chain, \(h(k, i) \), is a **permutation** of the hash table entries 0 to \(m-1 \).

How can we construct a permutation for a new element quickly?

Linear Probing

\[
h(k, i) = h(k) + 1 \mod m
\]

Lots of overlap

if \(h(k') = h(k) + 1 \), \(n-1 \) probe chain elements overlap in order.
How can we construct a permutation for a new element quickly?

Quadratic Probing

\[h(k, i) = (h(k) + c_1 i + c_2 i^2) \mod m \]

If there is a collision, \(h(k) = h(k') \), then \(h(k, i) = h(k, i+1) \). That is, if two entries have the same first key, they have the same \(n \) keys.
How can we construct a permutation for a new element quickly?

Double Hashing

\[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]

Successful if both hash functions are good.
There are \(m! \) possible permutations of \(m \) entries. How many are possible with:

- Linear Probing?
- Quadratic Probing?
- Double Hashing? Assume \(h_1(k) \) is independent of \(h_2(k) \).
Hashing provides excellent expected case access insertion and deletion, but can have poor worst-case performance.

If the set of keys is static, we can have excellent worst case performance as well.

Static keys: DVD filenames, reserved keywords.
Perfect Hashing

- Construct a regular hash table with \(n \) entries. – some entries will be empty.
- Identify a top level hash function \(h \).
- Rather than chaining, use a second hash table at each cell.
- For non-empty cells with \(n_i \) elements, allocate a new hash table with \(n + i^2 \) elements.
Perfect Hashing Example
Perfect Hashing

- The sparse table makes it easy to define a hash function which generates no collisions for a particular set of keys. Only \(\frac{1}{n} \) cells will be occupied.
- Use an \((a_i k + b_i) \mod m\) hash function for each cell. If there are collisions, try a different assignment of \(a_i \) and \(b_i \) until one yields no collisions.
- Most values of \(a_i \) and \(b_i \) will yield no collisions.
- This guarantees constant time look up.
- The trade off is that insertion and deletion are outrageously slow. Makes this only useful for static keys.
Next time

HW 11 is due

Course Evaluations, please.
 - Multi-threaded Algorithms