Last Time

- Open Addressing Hashing
Today

- Multithreading
Two Styles of Threading

- **Shared Memory** – Every thread can access the same memory (data).
- **Distributed Memory** – Each thread has its own partition of the memory
Types of Parallelism

Nested Parallelism

- Call a method.
- Don’t wait for it to return.
Parallel Loops

- Just like a for loop
- Loop executions run concurrently
Parallelization keywords

- **spawn** – Start a new thread running
- **sync** – Wait here until all threads finish
- **parallel** – indicates a parallel loop
Fibonacci example for parallelism

\[
\text{FIB}(n) \\
\begin{align*}
\text{if} \ n \leq 1 \ &\text{then} \\
&\text{return} \ n \\
\text{else} \\
&x = \text{FIB}(n-1) \\
&y = \text{FIB}(n-2) \\
&\text{return} \ x + y \\
\text{end if}
\end{align*}
\]
Fibonacci example for parallelism

\[\text{FIB}(n) \]

\begin{verbatim}
if \ n \leq 1 \ then
 \return \ n
else
 x = \text{spawn} \ \text{FIB}(n-1)
 y = \text{FIB}(n-2)
 \text{sync}
 \return \ x + y
end if
\end{verbatim}
Recursion of Fib(6)
While uses 17 commands, the critical path – the longest from initial strand to the final strand – is 8 units long. (Can be found using a BFS.)
Some Terminology

- **Work** is the number of calls to a function that are made (T_1).
- **Span** is the length of the critical path (T_∞).

The fastest a process can run on a multicore processor with P threads is $T_P \geq T_1/P$.

- The **speedup** is T_1/T_P. If the speedup is P we have perfect linear speedup.

- The **parallelism** of an algorithm is T_1/T_∞. This is the maximum possible speedup that an algorithm can achieve by adding more processors.
Most of what we’ve done so far has been the analysis and optimization of work.

Analyzing span is different. The total span of a parallel algorithm with two components A and B is \(\max(T_\infty(A), T_\infty(B)) \).

For P-Fib(x):

\[
T_\infty(n) = \max(T_\infty(n-1), T_\infty(n-2)) + \Theta(1) \tag{1}
\]

\[
= T_\infty(n-1) + \Theta(1) \tag{2}
\]
Analyzing multithreaded algorithms

- Most of what we’ve done so far has been the analysis and optimization of **work**.
- Analyzing **span** is different. The total span of a parallel algorithm with two components A and B is $\max(T_\infty(A), T_\infty(B))$.

For P-Fib(x):

$$T_\infty(n) = \max(T_\infty(n-1), T_\infty(n-2)) + \Theta(1) \quad (1)$$

$$= T_\infty(n-1) + \Theta(1) \quad (2)$$

$$= \Theta(n) \quad (3)$$

$$= \Theta(n) \quad (4)$$

Huge Parallelism: $T_1(n)/T_\infty(n) = \theta(\phi^n/n)$
If the iterations of a loop don’t depend on each other, they can run in parallel.

For example, multiply a matrix A by a vector x.

$$y_i = \sum_{j=1}^{n} A_{ij} x_j$$
\[y_i = \sum_{j=1}^{n} A_{ij}x_j \]

Mat-Vec(A, x)

\[
\begin{align*}
n & = \text{A.rows} \\
y & = \text{new vector with n cells} \\
\text{for } i & = 1 \text{ to } n \text{ do} \\
& \quad y_i = 0 \\
\text{end for} \\
\text{for } i & = 1 \text{ to } n \text{ do} \\
& \quad \text{for } j = 1 \text{ to } n \text{ do} \\
& \quad \quad y_i = y_i + a_{ij}x_j \\
& \quad \text{end for} \\
\text{end for}
\]
\[y_i = \sum_{j=1}^{n} A_{ij}x_j \]

Mat-Vec(A,x)

- \(n = A\text{.rows} \)
- \(y = \text{new vector with } n \text{ cells} \)
- \(\text{for parallel } i = 1 \text{ to } n \text{ do} \)
 - \(y_i = 0 \)
- \(\text{end for} \)
- \(\text{for parallel } i = 1 \text{ to } n \text{ do} \)
 - \(\text{for } j = 1 \text{ to } n \text{ do} \)
 - \(y_i = y_i + a_{ij}x_j \)
 - \(\text{end for} \)
- \(\text{end for} \)
Race Conditions

```python
Race()

x = 0
for parallel i = 1 to 2 do
    x = x + 1
end for
print x
```

Need to make sure that the two threads are independent – no writing to memory that other threads are reading from.
Multithreaded Merge Sort

MERGE-SORT(A,p,r)

if \(p < r \) then

\[q = \left\lfloor \frac{p + r}{2} \right\rfloor \]

spawn **MERGE-SORT(A, p, q)**

MERGE-SORT(A, q + 1, r)

sync

MERGE(A, p, q, r)

end if

Spawn two recursive calls to Merge Sort.
No problem
Multithreaded Merge Sort

Work

\[MS_1(n) = 2MS_1(n/2) + \Theta(n) \]
\[= \Theta(n \log n) \]

Span

\[MS_\infty(n) = MS_\infty(n/2) + \Theta(n) \]
\[= \Theta(n) \]

Parallelization

\[\frac{MS_1}{MS_\infty} = \frac{\Theta(n \log n)}{\Theta(n)} = \Theta(\log n) \]
Parallel Merge

- Serial Merge is dominating the performance.
- How can we parallelize merge?
- Divide-and-conquer Merge
 - Put the middle element, z, of the smaller of the two lists in the correct position
 - Merge the subarrays containing elements smaller than z
 - Merge the subarrays containing elements greater than z
Parallel Merge

<table>
<thead>
<tr>
<th>P-MERGE($T, p_1, r_1, p_2, r_2, A, p_3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_1 = r_1 - p_1 + 1$</td>
</tr>
<tr>
<td>$n_2 = r_2 - p_2 + 1$</td>
</tr>
<tr>
<td>if $n_1 < n_2$ then</td>
</tr>
<tr>
<td>swap p’s, r’s and n’s</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>if $n_1 == 0$ then</td>
</tr>
<tr>
<td>return</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>$q_1 = \lfloor (p_1 + r_1)/2 \rfloor$</td>
</tr>
<tr>
<td>$q_2 = \text{Binary-Search}(T[q_1], T, p_2, r_2)$</td>
</tr>
<tr>
<td>$q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$ // Where to put $T[q_1]$</td>
</tr>
<tr>
<td>$A[q_3] = T[q_1]$</td>
</tr>
<tr>
<td>spawn P-MERGE($T, p_1, q_1 - 1, p_2, q_2 - 1, A, p_3$)</td>
</tr>
<tr>
<td>P-MERGE($T, q_1 + 1, r_1, q_2 + 1, r_2, A, q_3 + 1$)</td>
</tr>
<tr>
<td>sync</td>
</tr>
<tr>
<td>end if</td>
</tr>
</tbody>
</table>
Span

- Identify the **maximum** number of elements in the largest call to P-Merge.
- The worst case merges $n_1/2$ elements (from the larger subarray) with all n_2 elements (from the smaller subarray).

\[
\left\lfloor \frac{n_1}{2} \right\rfloor + n_2 \leq \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2} \\
= \frac{(n_1 + n_2)}{2} + \frac{n_2}{2} \\
\leq \frac{n}{2} + \frac{n}{4} \\
= \frac{3n}{4}
\]

\[
PM_\infty(n) = PM_\infty(3n/4) + \Theta(\log n) \\
= \Theta(\log^2 n)
\]
Parallel Merge

Work

\[PM_1(n) = PM_1 = PM_1(\alpha n) + PM_1((1 - \alpha)n) + O(\log n) \]

- \(PM_1 \) is clearly \(\Omega(n) \).
- Can show that \(PM_1(n) \leq c_1 n - c_2 \log n \) for constants \(c_1, c_2 \) proving that \(PM_1 = O(n) \).
- Thus, \(PM_1 = \Theta(n) \).
Parallel Merge Sort

\textbf{P-MergeSort}(A, p, r, B, s)

\begin{align*}
n &= r - p + 1 \\
\text{if } n &= 1 \text{ then} \\
\text{else} \\
&\text{let } T[n] \text{ be a new array} \\
q &= \lfloor (p + r)/2 \rfloor \\
q' &= q - p + 1 \\
\text{spawn } \text{P-Merge-Sort}(A, p, q, T, 1) \\
\text{P-Merge-Sort}(A, q + 1, r, T, q' + 1) \\
\text{sync} \\
\text{P-Merge}(T, 1, q', q' + 1, n, B, s) \\
\text{end if}
\end{align*}
Parallel Merge Sort

\[
PMergeSort_1(n) = 2PMergeSort_1(n/2) + PM_1(n) \\
= 2PMergeSort_1(n/2) + \Theta(n) \\
= \Theta(n \log n)
\]
Parallel Merge Sort

Span

\[PMergeSort_{\infty}(n) = PMergeSort_{\infty}(n/2) + PM_{\infty}(n) \]
\[= PMergeSort_{\infty}(n/2) + \Theta(\log^2 n) \]
\[= \Theta(\log^3 n) \]

Parallelism

\[PMergeSort_1(n) / PMergeSort_{\infty}(n) = \Theta(n \log n) / \Theta(\log^3 n) \]
\[= \Theta(n / \log^2 n) \]
Bye

- Next time
- Final Review
 - Email or Bring Questions to class.