Lecture 3: Recursion
CSCI 700 - Algorithms I

Andrew Rosenberg

September 7, 2010
Last Time

- Asymptotic Notation
- Review of Proofs by Induction
Today

- Recursion
 - Binary Search
 - MergeSort
 - QuickSort
Recursion

- A recursive function calls itself.
Recursion

- A **recursive** function calls itself.
- Requirements to avoid infinite loops
 - A stopping condition
 - Modification of input
Fibonacci Series

- 1, 1, 2, 3, 5, 8, 12, 20, 32, 52, …

- Related to the Golden Ratio ϕ
Formula for Calculating Fibonacci numbers

- $Fib(1) = 1$
- $Fib(2) = 1$
- $Fib(n) = Fib(n - 1) + Fib(n - 2)$ for $n > 2$

1, 1, 2, 3, 5, 8, 12, 20, 32, 52, ...
Fib(n) in pseudocode

Fib(n)

1: if n = 1 then
2: return 1
3: end if
4: if n = 2 then
5: return 1
6: end if
7: return Fib(n-1) + Fib(n-2)
How many times is $Fib(n)$ called?
Fib(3)

Fib(3) →
Fib(2) → 1
Fib(1) → 1

1

2
Fib(4)

Fib(3) Fib(2)

Fib(2) Fib(1)

1 1 2 2
Fib(5)

Fib(5) →
Fib(4) →
Fib(3) →
Fib(2) →
Fib(1) →
1
2
4
2
Fib(n)

1 = 2^0
2 = 2^1
4 = 2^2
8 = 2^3
Fib(n) = \(O(2^n) \)

We will return to Fib(n) when we talk about Dynamic Programming.
Fib(n) = O(2^n)
 - To think about. Fib(n) = \Theta(2^{\frac{n}{2}})

We will return to Fib(n) when we talk about Dynamic Programming.
Find the index i of an item x in a sorted array A of size n.

```c
int Find(A, x)
{
    ... 
    return i
}
```
int Find(A, x)

1: for i ← 0..N-1 do
2: if A[i] = x then
3: return i
4: end if
5: end for
6: return Not Found
The for loop (line 1-5) runs \(N \) times.

- **Best Case** \(A[0] = x \) \(\Theta(1) \)
- **Worst Case** \(A[n] = x \) or \(x \) is not in \(A \) \(\Theta(n) \)
- **Expected Case** if \(x \) is in \(A \), \(\Theta(\frac{n}{2}) = \Theta(n) \), if not, \(\Theta(n) \)

```c
int Find(A, x)
{
    for i ← 0..N-1 do
        if A[i] = x then
            return i
        end if
    end for
    return Not Found
}
```
Binary Search Example

- $A = [10, 13, 14, 29, 37]$
- Find 29 in A
 - Check 14. $A_1 = [10, 13] \ A_2 = [29, 37]$
 - Find 29 in A_2
 - Check 29. Success.
int Find(A, x)

1: \textbf{return} \text{ BinarySearch}(A, x, 1, N+1)

int BinarySearch(A, x, low, high)

1: \textbf{if} low > high \textbf{then}
2: \textbf{return} Not Found
3: \textbf{end if}
4: mid \leftarrow \lfloor \frac{low+high}{2} \rfloor
5: \textbf{if} x = A[mid] \textbf{then}
6: \textbf{return} mid
7: \textbf{end if}
8: \textbf{if} x < [mid] \textbf{then}
9: \textbf{return} BinarySearch(A, x, low, mid-1)
10: \textbf{else}
11: \textbf{return} BinarySearch(A, x, mid+1, high)
12: \textbf{end if}
Logarithmic and Exponential Growth

- Note: These are crude rules of thumb.
- Multiplication at each recursive step leads to exponential growth
- Division at each recursive step leads to logarithmic growth
Runtime of Binary Search

- Each recursive call to BinarySearch cuts the examined size of A in half.
- Therefore suspect that BinarySearch(A, x, low, high) is $\Theta(\log n)$
- **Best Case** $A[mid] = x \Theta(1)$
- **Worst Case** x is not in A $\Theta(\log n)$
- **Expected Case** if x is in A, $\Theta(\log n - 1) = \Theta(\log n)$. x is not in A $\Theta(\log n)$
Binary vs. Sequential Search

- Binary Search - $\Theta(\log n)$
- Sequential Search - $\Theta(n)$
- ...but Binary search requires A to be sorted.
- The best sorting we’ve looked at is $\Theta(n^2)$. Can we do better?
Divide and Conquer

- A recursive strategy.
- **Divide** the problem into subproblems
- **Conquer** the subproblems recursively
- **Combine** the subproblem solutions into a solution of the initial problem.
To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [1, 4, 7, 9, 11]$
- $A_2 = [2, 3, 8, 10]$
- $A = []$
Merge Sort

To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [4, 7, 9, 11]$
- $A_2 = [2, 3, 8, 10]$
- $A = [1]$
To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [4, 7, 9, 11]$
- $A_2 = [3, 8, 10]$
- $A = [1, 2]$
To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [4, 7, 9, 11]$
- $A_2 = [8, 10]$
- $A = [1, 2, 3]$
To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [7, 9, 11]$
- $A_2 = [8, 10]$
- $A = [1, 2, 3, 4]$
To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [9, 11]$
- $A_2 = [8, 10]$
- $A = [1, 2, 3, 4, 7]$
Merge Sort

To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [9, 11]$
- $A_2 = [10]$
- $A = [1, 2, 3, 4, 7, 8]$
Merge Sort

- To construct a sorted list from two sorted lists is $\Theta(n)$.
- $A_1 = [11]$
- $A_2 = [10]$
- $A = [1, 2, 3, 4, 7, 8, 9]$
To construct a sorted list from two sorted lists is $\Theta(n)$.

- $A_1 = [11]$
- $A_2 = []$
- $A = [1, 2, 3, 4, 7, 8, 9, 10]$
Merge Sort

- To construct a sorted list from two sorted lists is $\Theta(n)$.
- $A_1 = []$
- $A_2 = []$
- $A = [1, 2, 3, 4, 7, 8, 9, 10, 11]$
Merge Sort

- Apply Divide and Conquer to Merge Sort
- Divide the n element array into two subarrays with $\frac{n}{2}$ elements each to be sorted.
- Conquer by sorting the subsequences using Merge Sort
- Combine the two subsequences (as above) to construct the sorted array
MergeSort(A)

if size(A) = 1 then
 return A
end if
mid ← ⌊size(A)/2⌋
A_1 = MergeSort(A[1..mid])
A_2 = MergeSort(A[mid+1..N])
return Merge(A_1, A_2)
Merge Sort Example

- Divide
- $A = [10, 2, 6, 4]$
Merge Sort Example

- Divide
- A = [10, 2, 6, 4]
- A = [10, 2][6, 4]
Merge Sort Example

- Divide
 - A = [10, 2, 6, 4]
 - A = [10, 2][6, 4]
 - A = [10][2][6][4]
Merge Sort Example

- **Conquer** (or Merge)
- $A = [10, 2, 6, 4]$
- $A = [2, 10][4, 6]$
- $A = [10][2][6][4]$
Merge Sort Example

- **Conquer** (or Merge)
- A = [2, 4, 6, 10]
- A = [2, 10][4, 6]
- A = [10][2][6][4]
Runtime analysis of MergeSort

How long does MergeSort take? $\Theta(\text{?})$
Runtime analysis of MergeSort

- How long does MergeSort take? $\Theta(?)$
- How many levels of recursion are there?
Runtime analysis of MergeSort

- How long does MergeSort take? $\Theta(?)$
- How many levels of recursion are there?
- $\log n$
Runtime analysis of MergeSort

- How long does MergeSort take? $\Theta(?)$
- How many levels of recursion are there? log n
- How many operations are performed at each level of the recursion?
Runtime analysis of MergeSort

- How long does MergeSort take? $\Theta(?)$
- How many levels of recursion are there? $\log n$
- How many operations are performed at each level of the recursion? n
Runtime analysis of MergeSort

- How long does MergeSort take? $\Theta(\cdot)$
- How many levels of recursion are there?
 - $\log n$
- How many operations are performed at each level of the recursion?
 - n
- Merge Sort is $\Theta(n \log n)$
Quick Sort

- Another recursive sorting Algorithm
- Concatenating arrays is $\Theta(1)$
- Identifying those points in an array that are higher than a point is $\Theta(n)$
Quick Sort

- Identify a point $A[i]$ from the A called the “pivot”
- Construct lists A_1 and A_2 such that A_1 contains all the elements of A less than $A[i]$, and A_2 those greater than $A[i]$
- Recursively sort A_1 and A_2
- Concatenate A_1, $A[i]$ and A_2
Quick Sort Example

- Divide
- $A = [10, 2, 6, 4]$
Quick Sort Example

- Divide
- $A = [10, 2, 6, 4]$
- Select pivot 6
Quick Sort Example

- Divide
- $A = [10, 2, 6, 4]$
- Select pivot 6
- $A = [2, 4][6][10]$
Quick Sort Example

- Divide
- A = [10, 2, 6, 4]
- Select pivot 6
- A = [2, 4][6][10]
- A₁ = [2,4]
Quick Sort Example

- **Divide**
- \(A = [10, 2, 6, 4] \)
- Select pivot 6
- \(A = [2, 4][6][10] \)
- \(A_1 = [2,4] \)
- Select pivot 4
Quick Sort Example

- **Divide**
- \(A = [10, 2, 6, 4] \)
- Select pivot 6
- \(A = [2, 4][6][10] \)
- \(A_1 = [2,4] \)
- Select pivot 4
- \(A = [2][4] \)
Quick Sort Example

- Combine
- \(A_1 = [2][4] \) return \([2, 4]\)
Quick Sort Example

- Combine
- \(A_1 = [2][4] \) return \([2, 4]\)
- \(A = [2, 4][6][10] \) return \([2, 4, 6, 10]\)
How long does QuickSort take? $\Theta(\cdot)$
Runtime analysis of QuickSort

- How long does QuickSort take? $\Theta(\cdot)$
- How many levels of recursion are there?
Runtime analysis of QuickSort

- How long does QuickSort take? \(\Theta(\cdot) \)
- How many levels of recursion are there?
- \(\log n \)
Runtime analysis of QuickSort

- How long does QuickSort take? $\Theta(\cdot)$
- How many levels of recursion are there?
 - $\log n$
- How many operations are performed at each level of the recursion?
Runtime analysis of QuickSort

- How long does QuickSort take? \(\Theta(?) \)
- How many levels of recursion are there? \(\log n \)
- How many operations are performed at each level of the recursion? \(n \)
Runtime analysis of QuickSort

- How long does QuickSort take? $\Theta(\cdot)$
- How many levels of recursion are there?
 - $\log n$
- How many operations are performed at each level of the recursion?
 - n
- Quick Sort is $\Theta(n \log n)$
QuickSort vs. MergeSort

<table>
<thead>
<tr>
<th></th>
<th>MergeSort</th>
<th>QuickSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Conquer</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Combine</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Expected vs. Worst Case runtime

- Quicksort has an expected runtime of $\Theta(n \log n)$
- QuickSort could be as slow as $\Theta(n^2)$
Expected vs. Worst Case runtime

- Quicksort has an expected runtime of $\Theta(n \log n)$
- QuickSort could be as slow as $\Theta(n^2)$
- How?
Next time (9/16)
- Analyzing the runtime of general recursive algorithms.
- Read Chapter 8.