Lecture 5: Sorting in Linear Time
CSCI 700 - Algorithms I

Andrew Rosenberg

September 21, 2010
Last Time

- Recurrence Relations
Today

- Sorting in Linear Time
Sorting

- Sorting Algorithms we’ve seen so far
 - Insertion Sort - \(\Theta(n^2) \)
 - Quick Sort - \(O(n \log n) \)
 - Merge Sort - \(O(n \log n) \)
Sorting faster than $\Theta(n \log n)$

- **Comparison Sorting** - Sorting based on comparison of two elements $A[i]$ and $A[j]$
 - For this discussion, we will use only $A[i] \leq A[j]$.

- Is it possible to sort faster than $\Theta(n \log n)$?
Comparison Sorting - Sorting based on comparison of two elements \(\text{A}[i]\) and \(\text{A}[j]\)

- “Comparison” is one of these operations \(\text{A}[i] < \text{A}[j]\),
 \(\text{A}[i] \leq \text{A}[j]\), \(\text{A}[i] > \text{A}[j]\), \(\text{A}[i] \geq \text{A}[j]\), or \(\text{A}[i] = \text{A}[j]\).
- For this discussion, we will use only \(\text{A}[i] \leq \text{A}[j]\).

Is it possible to sort faster than \(\Theta(n \log n)\)?

-Spoiler. Yes (sometimes).
Decisions of a comparison sort can be viewed as a tree.

- nodes - comparisons, leaves - permutations of a
- # comparisons $=$ length of the path
Lower bound on runtime of Comparison Sort

- The runtime of any comparison algorithm is $\Omega(h)$, where h is the height of the comparison tree.
- Any sorting algorithm must be able to construct any permutation of A.
- How many permutations are there of A?
The runtime of any comparison algorithm is $\Omega(h)$, where h is the height of the comparison tree.

Any sorting algorithm must be able to construct any permutation of A.

How many permutations are there of A?

- $n = \text{size}(A)$, $n!$
Lower bound on runtime of Comparison Sort

- We have a (binary) comparison tree of height h, with l leaves.
- Each permutation of A must be reachable, so $n! \leq l$.
- Also, a binary tree can have at most 2^h leaves, so $l \leq 2^h$
- $2^h \geq n!$
- $\log 2^h \geq \log n!$
- $h \geq \log n!$
- $h = \Theta(n \log n)$
- Since h is the maximum number of comparisons, any Comparison Sort is $\Omega(n \log n)$
Aside

Proof.

Show that $\log n! = \Theta(n \log n)$.

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log n! \approx \log \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\approx \log \sqrt{2\pi n} + \log \left(\frac{n}{e}\right)^n$$

$$\approx \log \sqrt{2\pi n} + n \log \left(\frac{n}{e}\right)$$

$$\approx \log ((2\pi n)^{\frac{1}{2}}) + n(\log n - \log e)$$

$$\approx \frac{1}{2} \log 2\pi + \frac{1}{2} \log n + n \log n - n \log e$$

$$= \Theta(1) + \Theta(\log n) + \Theta(n \log n) + \Theta(n)$$

$$= \Theta(n \log n)$$
How can we sort faster than $\Theta(n \log n)$

- Comparison Sorting
 1. We never inspect the value of $A[i]$ – only compare to $A[j]$.
 2. The values of A are unbounded.

- If we can limit the values of A, we can break the lower bound on sorting.
How can we sort faster than $\Theta(n \log n)$

- **Comparison Sorting**
 1. We never inspect the value of $A[i]$ – only compare to $A[j]$
 2. The values of A are unbounded.

- If we can limit the values of A, we can break the lower bound on sorting.

- Specifically, if $0 \leq A[i] < k$ for all $A[i] \in A$ and $k = O(n)$, we can sort in linear time.
For each input element, $A[i]$ determine how many elements have a value less than $A[i]$.

Use a k-element array to count the number of elements with each of the k possible values.

Reconstruct the sorted array from these counts.
Counting Sort

- For each input element, $A[i]$ determine how many elements have a value less than $A[i]$.
- Use a k-element array to count the number of elements with each of the k possible values.
- Reconstruct the sorted array from these counts.
- Note: only works if k is asymptotically smaller than n.
- I.e. Small vocabulary, many tokens.
- A lot of repetition in A.
Counting Sort Example

- Initialize C
- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [x, x, x, x, x, x, x, x]$
- $C = [0, 0, 0, 0, 0, 0]$
Counting Sort Example

- Count the number of elements at each value and store in C
- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [x, x, x, x, x, x, x, x]$
- $C = [2, 0, 2, 3, 0, 1]$
Counting Sort Example

- Change the counts in C to an index in the sorted array.
- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [x, x, x, x, x, x, x, x]$
- $C = [2, 2, 4, 7, 7, 8]$
Use C to construct the sorted array, B.

- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [x, x, x, x, x, x, 3, x]$
- $C = [2, 2, 4, 6, 7, 8]$
Use C to construct the sorted array, B.

$A = [2, 5, 3, 0, 2, 3, 0, 3]$
$B = [x, 0, x, x, x, x, 3, x]$
$C = [1, 2, 4, 6, 7, 8]$
Counting Sort Example

- Use C to construct the sorted array, B.
- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [x, 0, x, x, x, 3, 3, x]$
- $C = [1, 2, 4, 5, 7, 8]$
Use C to construct the sorted array, B.

- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [x, 0, x, 2, x, 3, 3, x]$
- $C = [1, 2, 3, 5, 7, 8]$
Counting Sort Example

- Use C to construct the sorted array, B.
- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [0, 0, x, 2, x, 3, 3, x]$
- $C = [0, 2, 3, 5, 7, 8]$
Use C to construct the sorted array, B.

- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [0, 0, x, 2, 3, 3, 3, x]$
- $C = [0, 2, 3, 4, 7, 8]$
Use C to construct the sorted array, B.

$A = [2, 5, 3, 0, 2, 3, 0, 3]$
$B = [0, 0, x, 2, 3, 3, 3, 5]$
$C = [0, 2, 3, 4, 7, 7]$
Counting Sort Example

- Use C to construct the sorted array, B.
- $A = [2, 5, 3, 0, 2, 3, 0, 3]$
- $B = [0, 0, 2, 2, 3, 3, 3, 5]$
- $C = [0, 2, 2, 4, 7, 7]$
Counting sort pseudocode

CountingSort(A,B,k)

 for $i \leftarrow 0..k$ do
 $C[i] \leftarrow 0$
 end for

 for $j \leftarrow 1..\text{length}(A)$ do
 $C[A[j]] \leftarrow C[A[j]] + 1$
 end for

 for $i \leftarrow 1..k$ do
 $C[i] \leftarrow C[i - 1] + C[i]$
 end for

 for $j \leftarrow \text{length}(A)..1$ do
 $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$
 end for
Counting sort runtime

\begin{align*}
\text{CountingSort}(A, B, k) \\
\text{for } i \leftarrow 0..k \text{ do} \\
\quad C[i] \leftarrow 0 \\
\text{end for} \\
\text{for } j \leftarrow 1..\text{length}(A) \text{ do} \\
\quad C[A[j]] \leftarrow C[A[j]] + 1 \\
\text{end for} \\
\text{for } i \leftarrow 1..k \text{ do} \\
\quad C[i] \leftarrow C[i - 1] \\
\text{end for} \\
\text{for } j \leftarrow \text{length}(A)..1 \text{ do} \\
\quad B[C[A[j]]] \leftarrow A[j] \\
\quad C[A[j]] \leftarrow C[A[j]] - 1 \\
\text{end for}
\end{align*}

- Runs in $\Theta(k + n + k + n) = \Theta(n)$ since $k = O(n)$
Radix Sort

- Assume an alphabet of \(k \) elements as in CountingSort.
- Radix sort allows us to sort \(d \) length strings composed of these \(k \) elements in linear time, assuming \(d = O(n) \).
- For example: 3-digit numbers.
- 10-letter words.
- Sorting by multiple fields – date, price, inventory id.
Radix Sort Operation

RadixSort(A,d)

for $i \leftarrow 1..d$ do
 run a stable sort to sort A on digit i
end for
Stable Sorting

- Stable sort

```
5 3 2 3 4
```

```
2 3 3 4 5
```
Stable Sorting

- Unstable sort
Radix Sort Example

BEG
BAG
CAB
DOG
CAT
Radix Sort Example

BEG
BAG
CAB
DOG
DOG
CAT
CAT
BEG
BAG
Radix Sort Example

- BEG
- BAG
- CAB
- DOG
- CAT

1. BEG, CAB, CAB
2. BAG, DOG, BAG
3. CAB, BEG, CAT
4. DOG, BAG, BEG
5. CAT, CAT, DOG
Radix Sort Example

<table>
<thead>
<tr>
<th>BEG</th>
<th>CAB</th>
<th>CAB</th>
<th>BAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAG</td>
<td>DOG</td>
<td>BAG</td>
<td>BEG</td>
</tr>
<tr>
<td>CAB</td>
<td>BEG</td>
<td>CAT</td>
<td>CAB</td>
</tr>
<tr>
<td>DOG</td>
<td>BAG</td>
<td>BEG</td>
<td>CAT</td>
</tr>
<tr>
<td>CAT</td>
<td>CAT</td>
<td>DOG</td>
<td>DOG</td>
</tr>
</tbody>
</table>
Can we sort linearly with unbounded input?

If input falls within the range, \([0, 1)\), we can.
Can we sort linearly with unbounded input?
If input falls within the range, \([0, 1)\), we can.
Or can be converted to this range.
Bucket Sort

- Given an input array, A, of length n.
- Divide the input range $[0, 1)$ into n buckets each with width $1/n$
 - The buckets are defined as $\left[\frac{i}{n}, \frac{i+1}{n} \right)$ for $i \in 0..n - 1$
- For each element in A, examine its value, and put it in an appropriate “bucket”.
- Sort each bucket separately.
- Reconstruct the sorted array from the sorted buckets.
How does Bucket Sort work?

- Assume the elements of the array are distributed approximately evenly.
- We can expect each bucket to contain $1/n$ elements.
- Even $\Theta(n^2)$ sorting of $1/n$ elements has an expected runtime that is smaller than linear in n.
- In fact, $O(2 - 1/n)$.
- Derivation of this is in Section 8.4, though you are not responsible for it.
Bye

Next time (9/23)
- Binary Search Trees

For Next Class
- Homework 3 - Sorting - is due.
- Read Sections 12.1, 12.2, 12.3