Last Time

- Binary Search Trees
Today

- Heaps
- Maximum (and Minimum)
- Mean
- Median
Heaps

- Recall: Binary Search Trees are constructed with $O(n \log n)$
- **Search** $O(\log n)$, **Insert** $O(\log n)$, **Delete** $O(\log n)$
- **Maximum** $O(\log n)$
- The data structure can be augmented to speed up **Maximum**.
Heaps are used when **Maximum** is going to be heavily used.

- Heaps are Binary Trees.

Max-Heap Property

- Given a Heap with height h, the top $h - 1$ levels of the heap must be complete.
- Heaps have the property that $T.key > T.right.key$ and $T > T.left.key$
Heap Example

```
16
14 10
8 7 9 3
```
Heap Example

```
16
/    \
14    10
/     / \
8     7   9 3
/   \
2
```
Heap Example

```
16
/   \
14   10
/ \
8   7 / \
2   4 1 9 3
```
The Max heap property allows compact representation of a heap as an array.

- Parent(i) = \lfloor i/2 \rfloor
- Left(i) = 2i
- Right(i) = 2i + 1
Heap Example

\[
\begin{align*}
A[i] &= 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \\
i &= 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{align*}
\]
This representation of a Heap as an array can be applied to any Binary Tree.

However, the **max-heap property** guarantees that this representation will be **compact**.

- This is due to the property that the top $height - 1$ levels of the tree are complete.

- An arbitrary Binary Tree has a worst-case array size of $O(n^2)$.
Binary Tree Example

A[i] 16 14 ∅ 8 ∅ ∅ ∅ 2 4 ∅ 1 2 3 4 5 6 7 8 9 10
The **Max heap property** allows compact representation of a heap as an array.

- `Parent(i) = ⌊i/2⌋`
- `Left(i) = 2i`
- `Right(i) = 2i + 1`
2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.
Representing a Heap as an array

- 2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.
- **Base case** $d = 1$ A tree of depth 1 has only a root. $2^0 = 1$.
- 2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.

- **Base case** $d = 1$ A tree of depth 1 has only a root. $2^0 = 1$.

- **Inductive Step** The maximum number of nodes at depth $d + 1$ arises when each node at d has the maximum number of children.
Representing a Heap as an array

- 2^{d-1} is the maximum number of nodes in a binary tree at a given depth d.
- **Base case** $d = 1$ A tree of depth 1 has only a root. $2^0 = 1$.
- **Inductive Step** The maximum number of nodes at depth $d + 1$ arises when each node at d has the maximum number of children.

 The maximum number of children is 2. Thus, the maximum number of nodes at depth $d + 1$ is double the maximum number at depth d.

- The maximum at depth d is 2^{d-1}.
- The maximum at depth $d + 1$ is $2 \times 2^{d-1} = 2^{(d+1)-1} (= 2^d)$
The maximum number of nodes in a tree of depth d is $2^d - 1$
The maximum number of nodes in a tree of depth d is $2^d - 1$.

Base Case A tree with depth $d = 1$ only has one node, a root. $2^d - 1 = 2^1 - 1 = 2 - 1 = 1$.
The maximum number of nodes in a tree of depth d is $2^d - 1$

Base Case A tree with depth $d = 1$ only has one node, a root. $2^d - 1 = 2^1 - 1 = 2 - 1 = 1$.

Inductive Step The maximum number of nodes in a tree of depth $d + 1$ is the number of nodes in a tree of depth d plus the maximum number of nodes at depth $d + 1$.

- Max nodes in a tree of depth d is $2^d - 1$
- Max nodes at depth $d + 1$ is $2^{(d+1)-1} = 2^d$
- $2^d + 2^d - 1 = 2 \times 2^d - 1 = 2^{d+1} - 1$
The nodes at any complete depth d can be uniquely indexed with the values between 1 and $2^d - 1$.

Base Case When $d = 1$ the tree has only a root. Thus the root is uniquely indexed by 1. $2^{1-1} = 2^0 = 1$ and $2^1 - 1 = 2 - 1 = 1$
The nodes at any complete depth \(d \) can be uniquely indexed with the values between 1 and \(2^d - 1 \).

Base Case When \(d = 1 \) the tree has only a root. Thus the root is uniquely indexed by 1. \(2^{1-1} = 2^0 = 1 \) and \(2^1 - 1 = 2 - 1 = 1 \)

Inductive Step Assume all nodes at depths \(d \) or below are uniquely indexed between 1 and \(2^d - 1 \).

The \(d + 1 \) depth of the tree contains \(2^{(d+1)-1} = 2^d \) nodes.

The range between \(2^{(d+1)-1} \) and \(2^{(d+1)} - 1 \) contains \(2^d \) indices.

\[
2^{d+1} - 1 - 2^{(d+1)-1} + 1 = 2^{d+1} - 2^d = 2 \times 2^d - 2^d = 2^d
\]

Therefore the range between \(2^d \) and \(2^{d+1} - 1 \) can contain enough elements for depth \(d + 1 \) and does not overlap with the elements at lower depths.
Assuming we have a complete graph with N nodes, can we arrange the elements compactly in an N element array using the following relationships?

- $\text{Parent}(i) = \lfloor i/2 \rfloor$
- $\text{Left}(i) = 2i$
- $\text{Right}(i) = 2i + 1$

Does j correspond to a node in the tree?

Does j correspond to a unique node in the tree?
Does an index \(j \) in the range 1 and \(2^d - 1 \) correspond to a node in a complete tree?

Assume not. If there exists an index \(j \) that does not correspond to a node.

Therefore \(j \) is not \(\text{LEFT}(i) \) nor \(\text{RIGHT}(i) \) for all \(1 \leq i \leq 2^d - 1 \).

If \(j = 1 \) then \(j \) corresponds to the root.

Otherwise, assume without loss of generality that there exists \(i \) such that \(2i \leq j \) and \(i + 1 \) such that \(2(i + 1) \geq j \).

Therefore \(2i \leq j \leq 2(i + 1) \).

Thus, \(j \) can be \(2i \) in which case it is \(\text{LEFT}(i) \)

Thus, \(j \) can be \(2i + 1 \) in which case it is \(\text{RIGHT}(i) \)

Thus, \(j \) can be \(2i + 2 = 2(i + 1) \) in which case it is \(\text{LEFT}(i+1) \)
Does an index \(j \) in the range \(1 \) and \(2^d - 1 \) correspond to a unique node in a complete tree?

Assume not. If there exists an index \(j \) that corresponds to two nodes.

\(j \) must be the child of two different nodes, \(i \) and \(i' \) where \(i \neq i' \).

Both Left children. \(2i \neq 2i' \) if \(i \neq i' \).

Both Right children. \(2i + 1 \neq 2i' + 1 \) if \(i \neq i' \).

Note \(2i \) is even and \(2i + 1 \) is odd

Therefore \(2i \neq 2i' + 1 \) for any integers \(i \) and \(i' \).
Heap Operations

- **Maximum** - Return the maximum.
- **MaxHeapify** - Given that the children of i are max-heaps, maintain the **max-heap property**.
- **BuildMaxHeap** - Given an unsorted array, construct a max-heap
- **MaxHeapInsert** - Insert an element into a max-heap.
- **HeapExtractMax** - Remove and return the maximum element from a max-heap.
- **HeapIncreaseKey** - Increase the value of an element in the max-heap. Used in **priority queues**.
- **HeapSort** - Use a max-heap to sort an array.
The maximum value is always at the root of a max-heap.

\[\text{MAXIMUM}(A) = \Theta(1) \]
Max Heapify

MaxHeapify(A, i)

\[l \leftarrow \text{Left}(i) \]
\[r \leftarrow \text{Right}(i) \]
\[\text{if } l \leq \text{size}(A) \text{ and } A[l] > A[i] \text{ then} \]
 \[\text{largest } \leftarrow l \]
\[\text{else} \]
 \[\text{largest } \leftarrow i \]
\[\text{end if} \]
\[\text{if } r \leq \text{size}(A) \text{ and } A[r] > A[\text{largest}] \text{ then} \]
 \[\text{largest } \leftarrow r \]
\[\text{end if} \]
\[\text{if } \text{largest} \neq i \text{ then} \]
 \[\text{swap } A[i] \leftrightarrow A[\text{largest}] \]
 \[\text{MaxHeapify}(A, \text{largest}) \]
\[\text{end if} \]
MaxHeapify Example

MaxHeapify(A,1)
MaxHeapify Example

MaxHeapify(A, 2)
MaxHeapify Example

MaxHeapify(A, 4)

```
2  8  1
4   7   9  3
14  10
16
```
MaxHeapify Example

MaxHeapify(A, 4)
MaxHeapify Runtime

- MaxHeapify runtime is $\Theta(height) = \Theta(log n)$.
- $height$ of a max-heap is $\Theta(log n)$
- OR... Runtime: $T(n) \leq T(2n/3) + \Theta(1) = O(log n)$
Build Max Heap

\textbf{BuildMaxHeap}(A)

\begin{itemize}
 \item \textbf{for} \(i \leftarrow n\ \text{downto} \ 1\ \text{do}\)
 \item \textbf{MaxHeapify}(A,i)
 \item \textbf{end for}
\end{itemize}

- But this calls MaxHeapify on the leaves as well as internal nodes of the tree.
- The leaves of a heap are indexed by \(\lceil n/2 \rceil + 1\) through \(n\)
Heap Example

A[i] = 16 14 10 8 7 9 3 2 4 1

i = 1 2 3 4 5 6 7 8 9 10
Build Max Heap

BuildMaxHeap(A)

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do
 MaxHeapify(A,i)
end for
We make \(n/2 \) calls to a function that is \(O(\log n) \), so \(O(n \log n) \).
We make $n/2$ calls to a function that is $O(\log n)$, so $O(n \log n)$.

A good guess, and true. However, it’s not a tight bound.

The runtime of MAXHEAPIFY depends on the height of the node $O(h)$, and most nodes have a small height. While $h = O(\log n)$, h is usually much smaller than $\log n$.

- Twice as many nodes have $h = 1$ than have $h = 2$.
What is the height of an n element heap?
Runtime of BuildMaxHeap

- What is the height of an n element heap?
- $\lfloor \log n \rfloor$.
How many nodes can a heap of size n have with height h?
How many nodes can a heap of size n have with height h?

\[
\left\lceil \frac{n}{2^{h+1}} \right
ceil
\]

This requires a slightly tricky proof. By induction show that the number of leaves ($h = 0$) is $\left\lceil \frac{n}{2} \right\rceil$. Then show that it holds for $h + 1$.
How many nodes can a heap of size n have with height h?

\[
\lceil \frac{n}{2^{h+1}} \rceil
\]

This requires a slightly tricky proof. By induction show that the number of leaves ($h = 0$) is $\lceil \frac{n}{2} \rceil$. Then show that it holds for $h + 1$.

The runtime of `MaxHeapify` on a node of height h is $O(h)$.
How many nodes can a heap of size n have with height h?

$\left\lceil \frac{n}{2^{h+1}} \right\rceil$

This requires a slightly tricky proof. By induction show that the number of leaves ($h = 0$) is $\left\lceil \frac{n}{2} \right\rceil$. Then show that it holds for $h + 1$.

The runtime of MaxHeapify on a node of height h is $O(h)$.

Thus BuildMaxHeap takes:

$$
\sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil \cdot O(h) = O \left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^{h+1}} \right) = O \left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \right)
$$

$$
\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \leq \sum_{h=0}^{\infty} \frac{h}{2^h} = \sum_{h=0}^{\infty} h \cdot \left(\frac{1}{2}\right)^h = \frac{1/2}{(1 - 1/2)^2} = 2
$$
Runtime of \texttt{BuildMaxHeap}

- How many nodes can a heap of size n have with height h?
 - $\left\lceil \frac{n}{2^{h+1}} \right\rceil$
- This requires a slightly tricky proof. By induction show that the number of leaves ($h = 0$) is $\left\lceil \frac{n}{2} \right\rceil$. Then show that it holds for $h + 1$.
- The runtime of \texttt{MaxHeapify} on a node of height h is $O(h)$.
- Thus \texttt{BuildMaxHeap} takes:

$$
\sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O \left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^{h+1}} \right) = O \left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \right)
$$

$$
O \left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \right) = O \left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) = O(n \cdot 2) = O(n)
$$
Correctness of \texttt{BuildMaxHeap}

\begin{algorithm}
\textbf{BuildMaxHeap}(A)
\begin{align*}
\text{for } i \leftarrow \lfloor n/2 \rfloor \text{ downto } 1 & \text{ do} \\
\phantom{\text{for }} \text{MaxHeapify}(A,i) \\
\text{end for}
\end{align*}
\end{algorithm}

- **Loop Invariant** At the start of each iteration of the for loop, each node $i + 1, i + 2, \ldots, n$ is the root of a max-heap.
- **Initialization** $i = \lfloor n/2 \rfloor$ Each node $\lfloor n/2 \rfloor + 1, \ldots, n$ is a leaf, and thus the root of a max-heap.
Correctness of BuildMaxHeap

\[
\text{BuildMaxHeap}(A)
\]

\[
\begin{align*}
&\text{for } i \leftarrow \lfloor n/2 \rfloor \text{ downto } 1 \text{ do} \\
&\hspace{1cm} \text{MaxHeapify}(A, i) \\
&\text{end for}
\end{align*}
\]

- **Loop Invariant** At the start of each iteration of the for loop, each node \(i + 1, i + 2, \ldots, n \) is the root of a max-heap.

- **Maintenance** The children of \(i \) have indices \(\text{Left}(i) > i \) and \(\text{Right}(i) > i \), and are thus roots of max-heaps. Therefore \(\text{MaxHeapify}(A, i) \) will make \(i \) the root of a max-heap, and preserve the max-heap property for all nodes \(k > i \).
Correctness of \texttt{BuildMaxHeap}

\textbf{BuildMaxHeap}(A)

\begin{verbatim}
for \(i \leftarrow \lfloor n/2 \rfloor \) downto 1 do
 \texttt{MaxHeapify}(A,i)
end for
\end{verbatim}

- \textbf{Loop Invariant} At the start of each iteration of the for loop, each node \(i + 1, i + 2, \ldots, n \) is the root of a max-heap.

- \textbf{Termination} When the for loop finishes \(i = 0 \). Thus each node 1, 2, \ldots, \(n \) is the root of a max-heap. Specifically, node 1 is.
Heap Increase Key

HeapIncreaseKey(A, i, key)

$A[i] \leftarrow key$

while $i > 1$ and $A[\text{Parent}(i)] < A[i]$ do

swap $A[i] \leftrightarrow A[\text{PARENT}(i)]$

$i \leftarrow \text{PARENT}(i)$

end while

- $O(\log n)$ - Heap traversal
Max Heap Insert

MaxHeapInsert(A, key)

```
size(A) ← size(A) + 1
A[size(A)] ← −∞
HeapIncreaseKey(A, size(A), key)
```

- $O(\log n)$ - **HeapIncreaseKey**(A, i, key)
Heap Extract Max

HEAP_EXTRACT_MAX(A)

\[
\begin{align*}
max & \leftarrow A[1] \\
size(A) & \leftarrow size(A) - 1 \\
\text{MaxHeapify}(A, 1) \\
\text{return} & \quad max
\end{align*}
\]

- \(O(\log n)\) - from \(\text{MaxHeapify}(A, 1)\)
- We can use a Heap to sort an array.
- Turn the array into a heap using \texttt{BuildMaxHeap}
- Position the \texttt{Maximum} element \(n \) times to construct a sorted array.
We can use a Heap to **sort** an array.

Turn the array into a heap using **BuildMaxHeap**

Position the **Maximum** element \(n \) times to construct a sorted array.

HeapSort(A)

BuildMaxHeap(A)

```plaintext
for i ← size(A) downto 2 do
    size(A) ← size(A) − 1
    MaxHeapify(A, 1)
end for
```
Heap Sort

- We can use a Heap to sort an array.
- Turn the array into a heap using \textbf{BuildMaxHeap}
- Position the Maximum element \(n\) times to construct a sorted array.

\textbf{HeapSort}(A)

\begin{verbatim}
\textbf{BuildMaxHeap}(A)
\textbf{for} i \leftarrow \text{size}(A) \textbf{downto} 2 \textbf{do}
\hspace{1em} \text{swap} A[1] \leftrightarrow A[\text{size}(A)]
\hspace{1em} \text{size}(A) \leftarrow \text{size}(A) - 1
\hspace{1em} \textbf{MaxHeapify}(A, 1)
\textbf{end for}
\end{verbatim}

- \textbf{BuildMaxHeap}(A) = \(O(n)\)
- \textbf{MaxHeapify}(A) = \(O(\log n)\) – called \(n\) times.
- \textbf{HeapSort}(A) = \(O(n \log n)\).
Bye

- Next time (10/7)
 - Balanced Binary Search Trees
- For Next Class
 - Read 13.1, 13.2, 13.3, 13.4