Proof of Horner’s Rule Correctness

- **Loop Invariant**

 \[y = \sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k \]

- **Initialization** Before the loop \(y = 0 \). At initialization, \(i = n \).

 \[y = \sum_{k=0}^{n-(n+1)} a_{k+i+1}x^k = \sum_{k=0}^{-1} a_{k+i+1}x^k = 0 \]
Proof of Horner's Rule Correctness

- **Loop Invariant**

\[y = \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k \]

- **Maintenance** At iteration \(j \) of the loop, \(i' = n - j + 1 \) and
\[y' = \sum_{k=0}^{n-(i'+1)} a_{k+i'+1} x^k \]. At iteration \(j + 1 \), \(i = n - j \) and
\[y = a_i + xy' \]. Need to show
\[y = \sum_{k=0}^{n-i} a_{k+i} x^k \]
Maintenance

Need to show

\[y = \sum_{k=0}^{n-i} a_{k+i}x^k \]

\[y = a_i + x \left(\sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k \right) \]

(1)

\[= a_i + x \left(a_{0+i+1}x^0 + \ldots + a_{(n-i)+i}x^{n-(i+1)} \right) \]

(2)

\[= a_i + (a_{0+i+1}x^1 + \ldots + a_{(n-i)+i}x^{n-i}) \]

(3)

\[= a_i + \sum_{k=1}^{n-i} a_{k+i}x^k \]

(4)

\[= a_{i+0}x^0 + \sum_{k=1}^{n-i} a_{k+i}x^k \]

(5)

\[= \sum_{k=0}^{n-i} a_{k+i}x^k \]

(6)
Proof of Horner’s Rule Correctness

- **Loop Invariant**

 \[y = \sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k \]

- **Termination** At the end of the loop, \(i = -1 \). Therefore

 \[y = \sum_{k=0}^{n-(i+1)} a_{k+i+1}x^k = \sum_{k=0}^{n} a_kx^k \]