Lecture 14: Greedy Algorithms
CSCI 700 - Algorithms I

Andrew Rosenberg
Last Time

- Dynamic Programming
Today

- Greedy Algorithms
Recap of Optimization.

- Find the greatest or smallest solution to some problem.
Recap of Optimization.

- Find the greatest or smallest solution to some problem.
- There are many valid solutions.
- Find the best solution – Efficiently.
Recap of Optimization.

- Find the greatest or smallest solution to some problem.
- There are many valid solutions.
- Find the best solution – Efficiently.
- Search over the space of (partial) solutions.
What is the shortest path between two points?
Shortest paths

- What is the shortest path between two points?

A line, but what if there are constraints?
What is the shortest path between two points?
You have a knapsack of a fixed size, k.

There is a set of n available items with associated sizes s_i and values v_i where $i \in \{1..n\}$

You want to take the greatest value of items.
Knapsack problems

- You have a knapsack of a fixed size, k.
- There is a set of n available items with associated sizes s_i and values v_i where $i \in \{1..n\}$
- You want to take the greatest value of items.
- **Fractional** Knapsack problem
- What’s the optimal solution?
You have a knapsack of a fixed size, \(k \).

There is a set of \(n \) available items with associated sizes \(s_i \) and values \(v_i \) where \(i \in \{1..n\} \).

You want to take the greatest value of items.

0-1 Knapsack problem

You must take all or none of each item.
Queuing

- Imagine a bank.
- There are a finite number of resources (tellers) and a set of jobs (customers) waiting to access them.
- How do we keep the average wait time to a minimum?

Operations Research
Greedy algorithms search for **global optima**, by making decisions towards **local optima**.
Define Greedy Algorithm

- Greedy algorithms search for global optima, by making decisions towards local optima.
- Components of a greedy strategy.
 - Determine the **optimal substructure** of the problem
 - Construct a recursive solution that covers the search space.
 - Prove that at each stage of the recursion, one of the optimal choices is the greedy choice. I.e. The greedy choice is always a safe choice.
 - Show that all but one of the subproblems constructed by making the greedy choice are empty. – There is only one step following the greedy choice.
 - Modify the recursive solution to implement the greedy strategy.
 - *Convert the recursive algorithm into an iterative algorithm.
Define a space of subproblems.

Let S_{ij} be a subproblem.

- For example, travel from city i to city j.

Let A_{ij} be an optimal solution to subproblem S_{ij}.

- Say, the shortest route between city i and city j.

if A_{ij} includes state k – travel through city k – then the solutions A_{ik} to S_{ik} and A_{kj} to S_{kj} must both be optimal.
Define a space of subproblems.

Let S_{ij} be a subproblem.

For example, travel from city i to city j.

Let A_{ij} be an optimal solution to subproblem S_{ij}.

Say, the shortest route between city i and city j.

if A_{ij} includes state k – travel through city k – then the solutions A_{ik} to S_{ik} and A_{kj} to S_{kj} must both be optimal.

Prove it.
Activity Selection

- Scheduling problem
- We have a set $S = \{a_1, a_2, \ldots, a_n\}$ of n proposed activities.
- Each activity a_i has a start time, s_i, and end time, e_i, where $0 \leq s_i < f_i < \infty$.
- We say that two activities are **compatible** if they don’t overlap.
- **Problem:** Identify the largest set of compatible activities.
Given the set of activities below, identify the largest set of compatible activities.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(s_i)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>(f_i)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Let $S_{ij} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$ be the subset of activities that start after activity a_i ends and ends before a_j starts.

Let A_{ij} be an optimal solution of S_{ij} a largest possible subset of activities that can be drawn from S_{ij}.

Problem: Find the largest possible set $S_{0,n+1}$.

Recursive Coverage of Activity Selection

- A_{ij} be an optimal solution of S_{ij}.
- $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$
Recursive Coverage of Activity Selection

- Let A_{ij} be an optimal solution of S_{ij}.
- $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$
- But we don’t know what k is.
- A_{ij} be an optimal solution of S_{ij}.
- $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$
- But we don’t know what k is.
- Try them all.
- $|A_{ij}| = \max_{i < k < j} |A_{ik}| + |A_{kj}| + 1$
Theorem

Consider a subproblem S_{ij} and let a_m be the activity in S_{ij} with the earliest finishing time.

$$f_m = \min\{f_k : a_k \in S_{ij}\}$$

Then

- a_m is a member of a maximum subset of compatible activities of S_{ij} – if it’s not it can be swapped for the activity in A_{ij} that ends earliest.

- The subproblem S_{im} is empty, so choosing a_m leaves S_{mj} as the only nonempty subproblem. – nothing can fit between i and m.

- Who cares?
Theorem

Consider a subproblem S_{ij} and let a_m be the activity in S_{ij} with the earliest finishing time.

$$f_m = \min \{ f_k : a_k \in S_{ij} \}$$

Then

- a_m is a member of a maximum subset of compatible activities of S_{ij} – if it’s not it can be swapped for the activity in A_{ij} that ends earliest.

- The subproblem S_{im} is empty, so choosing a_m leaves S_{mj} as the only nonempty subproblem. – nothing can fit between i and m.

Who cares?

This shows that we don’t have to search the whole space – limiting the subspace.
Theorem

Consider a subproblem \(S_{ij} \) and let \(a_m \) be the activity in \(S_{ij} \) with the earliest finishing time.

\[
f_m = \min\{f_k : a_k \in S_{ij}\}
\]

Then

- \(a_m \) is a member of a maximum subset of compatible activities of \(S_{ij} \) – if it’s not it can be swapped for the activity in \(A_{ij} \) that ends earliest.

- The subproblem \(S_{im} \) is empty, so choosing \(a_m \) leaves \(S_{mj} \) as the only nonempty subproblem. – nothing can fit between \(i \) and \(m \).

Who cares?

This shows that we don’t have to search the whole space – limiting the subspace.

Pick the item \(a_m \) with the earliest finishing time \(f_m \) at each step.
Activity Selection Solution

- Sort A by finishing time.
- Include a_1 in the solution.
- Include the compatible activity with the smallest finishing time in the solution.
- Repeat
GreedyActivitySelection(A)

\[A \leftarrow \text{SortByFinishingTime}(A) \]
\[n \leftarrow A.\text{size} \]
\[S \leftarrow \{A[1]\} \]
\[\text{for } m \leftarrow 2 \text{ to } n \text{ do} \]
\[\quad \text{if } s_m \geq f_i \text{ then} \]
\[\quad \quad S \leftarrow S \cup \{A[i]\} \]
\[\quad \quad i \leftarrow m \]
\[\quad \text{end if} \]
\[\text{end for} \]
Fractional Knapsack Problem

- You have a knapsack of a fixed size, \(k \).
- There is a set of \(n \) available items with associated sizes \(s_i \) and values \(v_i \) where \(i \in \{1..n\} \).
- You want to take the greatest value of items whose size sums to less than \(k \).
- **Fractional** Knapsack problem
- You can take as much or as little of each item as you like.
Optimal substructure.

Consider the most valuable load that has size k.

If we remove s of item j from the load, then the remaining load must be the most valuable with size $k - s$ that can be taken from the n-1 original items and the remaining $s_j - s$ units of item j.
What is the greedy choice here?
What is the greedy choice here?
- Take as much as possible of the most valuable item available remaining.
- Define value as cost per unit size.
Can we prove this?
Can we prove this?

Let \(i \) be the most valuable item. Assume there exists an optimal solution \(S \) with value \(V \).

Assume that \(S \) does not contain as much of \(i \) as it could have.

Then there exists some size \(s \) of \(i \) that could have been included in \(S \), but rather, \(S \) includes \(s \) units of some other item \(j \).

However, \(v_i > v_j \). Thus \(s \cdot v_i > s \cdot v_j \).

Therefore, if we replace \(j \) by \(i \) in \(S \), this new solution \(S' \) has value \(V' = V - s \cdot v_j + s \cdot v_i \).

\(V' > V \), which is a contradiction since \(S \) is optimal. Therefore \(i \) must be in \(S \).
Therefore the Fractional Knapsack Problem can be solved in \(\Theta(n \log n)\).

The items are sorted by value, then the largest set is identified.
The 0-1 Knapsack Problem is identical to the Fractional Knapsack problem with one constraint.

- If an item is selected, either all of it or none of it is included in the solution.
This problem has a similar optimal substructure.

Consider the most valuable load that has size k.

If we remove item j from the load, then the remaining load must be the most valuable with size $k - s_j$ that can be taken from the $n-1$ remaining items.
This problem has a similar optimal substructure.

Consider the most valuable load that has size k.

If we remove item j from the load, then the remaining load must be the most valuable with size $k - s_j$ that can be taken from the n-1 remaining items.

However, identifying item j is not so trivial.
Does the greedy strategy work for the 0-1 knapsack problem?
Does the greedy strategy work for the 0-1 knapsack problem?
Does the greedy strategy work for the 0-1 knapsack problem?
Does the greedy strategy work for the 0-1 knapsack problem?
Discussion Problem
Next time
 • Huffman Coding
For Next Class
 • Read 16.3