Homework 2 - Analysis of Runtimes

Algorithms I - CSCI 700 - Prof. Rosenberg

Due September 19

Problem 1) (10 points) Show that if \(T(n) = 6n^4 + 5n^3 + n^2 + 6 \), \(T(n) = \Theta(n^4) \)

Problem 2) (20 points) Based on Corman, et al. Problem 3-3a. Ordering by asymptotic growth rates. Rank the following function by order of growth; that is, find an arrangement of \(g_1, g_2, \ldots, g_{15} \) of the functions satisfying \(g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{14} = \Omega(g_{15}) \). Partition your list into equivalence classes such that \(f(n) \) and \(g(n) \) are in the same class if and only if \(f_n = \Theta(g(n)) \).

\[
\begin{array}{cccc}
 n^4 & \sum_{i=1}^{n} 1 & \log \log n & 2010 & \sum_{i=1}^{n} i \\
 2^n & \sqrt{n} & \log n & n^2 & n \log n \\
n^n & \sum_{i=1}^{n} \frac{1}{i} & n! & e^n & n \\
\end{array}
\]

Problem 3) Assume an input size of \(n \). Both Algorithms A and B perform the same function. Algorithm A has a runtime of \(f(n) \), and Algorithm B has a runtime of \(g(n) \). If \(f(n) = \Omega(g(n)) \) then, for sufficiently large values of \(n \), Algorithm B should be preferred, all else being equal. However, for small values of \(n \) this is not always true. For some small inputs, Algorithm A will produce faster runtimes. In this problem, you are asked to identify the “sufficiently large” integral input size \(k \) where \(f(n) > g(n) \) for all values of \(n \) such that \(n > k \). If \(f(n) \neq \Omega(g(n)) \) show why not.

3a. (5 points) \(f(n) = n; \ g(n) = 64\sqrt{n} \)
3b. (5 points) \(f(n) = n!; \ g(n) = 256n^5 + 128n^2 - 16n + 1024 \)
3c. (5 points) \(f(n) = \frac{1}{1023}n; \ g(n) = n\log 16n \)
3d. (5 points) \(f(n) = n^2; \ g(n) = \sum_{i=1}^{n} 2i + 1 \)
Problem 4) (25 points) Let \(S_n \) be a sequence of numbers for all \(n \geq 0 \). \(S_0 = 0 \). Let \(S_n = 2S_{n-1} + 1 \) for all \(n > 0 \). Prove by induction that \(S_n = 2^n - 1 \) for all values of \(n \geq 0 \).

Problem 5) Based on Corman Problem 2-3. Horner’s rule for computing polynomials.

The following code fragment implements Horner’s rule for evaluating a polynomial

\[
P(x) = y = \sum_{k=0}^{n} a_k x^k
\]

given the coefficients \(a_0, a_1, \ldots, a_n \) and a value for \(x \):

1. \(y \leftarrow 0 \)
2. \(i \leftarrow n \)
3. while \(i \geq 0 \) do
4. \(y \leftarrow a_i + x \cdot y \)
5. \(i \leftarrow i - 1 \)
6. end while
7. return \(y \)

5a. (10 points) What is the asymptotic running time of this code fragment for Horner’s rule? Show the derivation.

5b. (15 points) Prove that the following is a loop invariant for the while loop in lines 3-5,

\[
y = \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k
\]

Interpret a summation with no terms as equalling 0. Your proof should follow the structure of the loop invariant proof presented in Corman section 2.1 and should show that, at termination, \(y = \sum_{k=0}^{n} a_k x^k \).