Hashing
A dictionary supports (minimally) **INSERT**, **SEARCH** and **DELETE**.

Today: Hash Tables – another dictionary data structure.
Limitations of arrays

- Comparison sort and comparison search on an open set is bound by $\Omega(n \log n)$.
- Counting sort showed that if we have a closed domain of data (size $O(n)$), we can sort in linear time, $O(n)$.
- We can search a closed domain (size $O(n)$) in constant time, $O(1)$.
Given a domain of size $O(n)$, construct an $O(n)$ element T containing the elements in A.

Write a `LOOKUP` function to map the elements of the domain to indices in T.

`LOOKUP` might be a case statement, an enumeration, or nested ifs depending on language support.

Regardless of implementation `LOOKUP` is $O(1)$.

Search(T, x)

```
return $T[\text{LOOKUP}(x)]$
```

Insert(T, x)

```
$T[\text{LOOKUP}(x)] \leftarrow x$
```

Delete(T, x)

```
$T[\text{LOOKUP}(x)] \leftarrow \emptyset$
```
Constructing a table T with size equal to the number of keys U you want to index might be impractical.

- Say, if you want to index any strings with less than 32k characters.
 - Minimally $32,000^{27}$
Constructing a table T with size equal to the number of keys U you want to index might be impractical.

- Say, if you want to index any strings with less than 32k characters.
 - Minimally $32,000^{27}$

The solution: Map an open set U onto a closed set K which is much smaller than U.

- This mapping is performed using a hash function.
 - Let $|K| = m$
 - $h : U \rightarrow \{0, 1, \ldots, m - 1\}$

Hashing allows for a dictionary with Insert, Delete and Search with expected runtimes of $O(1)$.
Hash Table

U (universe of keys)

K

k_1, k_3, k_2, k_5, k_4

T

$h(k_3), h(k_1), h(k_2), h(k_5), h(k_4), m-1$
Hashing as an associative data structure

Using a hash function, we can store elements of an open set in a small data structure.

For example:

- \textbf{INSERT}(“Andrew”)
- \textbf{INSERT}(“Michael”)
- \textbf{INSERT}(“John”)
- \textbf{SEARCH}(“Michael”) = “Michael”
- \textbf{SEARCH}(“Sally”) = \emptyset
Hashing as an associative data structure

In practice, hash tables are used to store **key/value** pairs.

For example: Names (strings) are **keys**, Ages (integers) are **values**.

- **INSERT**("Andrew", 30)
- **INSERT**("Michael", 33)
- **INSERT**("John", 15)
- **SEARCH**("Michael") = 33
- **SEARCH**("Sally") = ∅
- **SEARCH**("Andrew") = 30
Hashing as an associative data structure

This allows a user to index a data structure by an element of an open set.

Arrays

Hash Tables
- H[“Andrew”] = 30
- H[“Michael”] = 33
- H[“John”] = 15
Hashing

U (universe of keys)

K

k_1, k_3, k_2, k_5, k_4

$h(k_3), h(k_1), h(k_2), h(k_5), h(k_4)$

T

v_3, v_1, v_2, v_5, v_4

$m-1$
What’s the catch?
The catch

What’s the catch?

Collisions
Figure 11.2 Cormen
Collisions

- Since U is much larger than m, the size of the hash table, there are multiple elements in U that have the same hash value $h(k_1) = h(k_2)$
 - Pigeon hole principle: if n items are put into m pigeon holes with $n > m$, then at least one pigeon hole must contain more than one item.
Problem: More than one key needs to occupy a single hash table entry.

Solution: Allow each hash table entry to hold more than one key.
Problem: More than one key needs to occupy a single hash table entry.

Solution: Allow each hash table entry to hold more than one key.

- Each element of the hash table is a list.
- **INSERT**(k, v):
 Insert v at the head of list T[h(k)]
- **SEARCH**(k):
 Search for an key k at the head of list T[h(k)]
- **DELETE**(k):
 Delete k from list T[h(k)]
Hash Table

U (universe of keys)

K

$k_1, k_3, k_2, k_6, k_5, k_4$

T

$k_1, k_6, k_5, k_4, k_3, k_2$
How much space is required to store N elements in a hash table with m entries with chaining?
How much space is required to store N elements in a hash table with m entries with chaining?

What is the worst case runtime for Insert, Search and Delete?
Performance of a hash table with Chaining

How much space is required to store \(N \) elements in a hash table with \(m \) entries with chaining?

What is the worst case runtime for \texttt{INSERT}, \texttt{SEARCH} and \texttt{DELETE}?

The best case?
Performance of a hash table with Chaining

How much space is required to store N elements in a hash table with m entries with chaining?

What is the worst case runtime for Insert, Search and Delete?

The best case?

What makes the difference?
Performance of a hash table with Chaining

How much space is required to store N elements in a hash table with m entries with chaining?

What is the worst case runtime for Insert, Search and Delete?

The best case?

What makes the difference?

Load factor: $\alpha = \frac{n}{m}$
Identifying a **good** hash function

Not all hash functions are equally good.

Let $s \in U$ be the set of all strings with $< 32k$ characters. Consider the following hash functions.

- $h : U \rightarrow 1$
Identifying a good hash function

Not all hash functions are equally good.

Let $s \in U$ be the set of all strings with $< 32k$ characters. Consider the following hash functions.

- $h : U \rightarrow 1$
- $h : U \rightarrow \text{int}(s[1])$

The more evenly distributed $h(k)$ is the better.
Identifying a good hash function

Not all hash functions are equally good.

Let $s \in U$ be the set of all strings with $< 32k$ characters. Consider the following hash functions.

- $h : U \rightarrow 1$
- $h : U \rightarrow \text{int}(s[1])$
- $h : U \rightarrow \sum_{i}^{n} \text{int}(s[i])$

The more evenly distributed $h(k)$ is the better.
Identifying a good size for a hash table

h(k) must be bound by m the size of the hash table.

How do we guarantee that?

Division Method $h(k) = k \mod m$

- As a rule of thumb, m is selected to be prime and far from a power of 2.
 - If $m = 2^p$, then the hash is just the lower p bits of k.
 - This is probably **not** evenly distributed.
Identifying a good size for a hash table

h(k) must be bound by \(m \) the size of the hash table.

How do we guarantee that?

Multiplication Method Choose a constant \(A \), such that \(0 < A < 1 \).

\[
h(k) = \lfloor m(kA \mod 1) \rfloor
\]

- \((kA \mod 1) \) - the fractional part of \(kA \).

The distribution is independent of \(m \). Allowing hash tables with sizes \(m = 2^p \).

- Knuth 1973 - *The Art of Programming* vol. 3: \(A \approx (\sqrt{5} - 1)/2 \) works reasonably well for most keys.

- There are other machine considerations that can be taken into account.
Bye

- Next time
 - Better Hashing