Last Time

- Review
- Insertion Sort
 - Analysis of Runtime
 - Proof of Correctness
Today

- Asymptotic Notation
 - Its use in analyzing runtimes.
- Review of Proofs by Induction
 - An important tool for correctness proofs.
Two Approaches

1. Empirical
 - Generate input.
 - Time the executable.

2. Theoretical
 - Prove the runtime as a function of the size of the input.
 - This is what we’ll be focusing on.
 - The RAM model.
 - All information can be held in RAM
 - All operations take the same amount of resources each time they’re called.
Runtime on large inputs is more important than small input.

- Sometimes, inefficient, but frequently called subroutines that operate on small input can have a dramatic impact on overall performance. But this isn't the kind of efficiency we'll be analyzing here.

- It is usually safe to assume that live inputs are larger and less well-formed than test input used during development.
We want to develop “classes of functions” to compare the runtime of an algorithm across machines.

Criteria

1. We only care about the behavior of the algorithm on input with size greater than some value n_0.
2. To transfer our analyses across machines, we consider functions that differ by at most a constant multiplier to be equivalent.
Definition

- Asymptotic Notation is a formal notation for discussing and analyzing “classes of functions”.

Criteria

1. Capture behavior when \(n_0 \leq n \to \infty \).
2. Functions that differ by at most a constant multiplier are considered equivalent.
One machine an algorithm may take:
\[T(n) = 15n^3 + n^2 + 4 \]
On another, \[T(n) = 5n^3 + 4n + 5 \]
Both will belong to the same class of functions. Namely, “cubic functions of \(n \).”
Function classes can be thought of as “how many times we do something to each input.”
Definition

\(f(n) \in O(g(n)) \) if there exists constants \(c > 0 \) and \(n_0 > 0 \) such that \(0 \leq f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \)

- “Big-O” notation
- \(O(g(n)) \) is an upper-bound on the growth of a function, \(f(n) \).
Prove that if \(T(n) = 15n^3 + n^2 + 4 \), \(T(n) = O(n^3) \).

Proof.

Let \(c = 20 \) and \(n_0 = 1 \).

Must show that \(0 \leq f(n) \) and \(f(n) \leq cg(n) \).

\[
0 \leq 15n^3 + n^2 + 4 \text{ for all } n \geq n_0 = 1.
\]

\[
f(n) = 15n^3 + n^2 + 4 \leq 15n^3 + n^3 + 4n^3 = 20n^3 = 20g(n) = cg(n)
\]
Prove that if $T(n) = 15n^3 + n^2 + 4$, $T(n) = O(n^4)$.

Proof.

Let $c = 20$ and $n_0 = 1$.
Must show that $0 \leq f(n)$ and $f(n) \leq cg(n)$.

$0 \leq 15n^3 + n^2 + 4$ for all $n \geq n_0 = 1$.

$f(n) = 15n^3 + n^2 + 4 \leq 15n^4 + n^4 + 4n^4$

$15n^4 + n^4 + 4n^4 = 20n^4 = 20g(n) = cg(n)$
$T(n) = 15n^3 + n^2 + 4$
$T(n) = O(n^3)$.
$T(n) = O(n^4)$.
$O(n)$ is an upper bound
“=” is not really equality. It’s used as “set inclusion” ∈ here.
Don’t use $O(n) = T(n)$
Definition

\(f(n) \in \Omega(g(n)) \) if there exists constants \(c > 0 \) and \(n_0 > 0 \) such that \(0 \leq c \cdot g(n) \leq f(n) \) for all \(n \geq n_0 \)

- “Big-Omega of n”
- \(\Omega(g(n)) \) is lower-bound on the growth of a function, \(f(n) \).
Prove that if \(T(n) = 15n^3 + n^2 + 4 \), \(T(n) = \Omega(n^3) \).

Proof.

Let \(c = 15 \) and \(n_0 = 1 \).

Must show that \(0 \leq cg(n) \) and \(cg(n) \leq f(n) \).

\[
0 \leq 15n^3 \quad \text{for all } n \geq n_0 = 1.
\]

\[
 cg(n) = 15n^3 \leq 15n^3 + n^2 + 4 = f(n)
\]
Prove that if $T(n) = 15n^3 + n^2 + 4$, $T(n) = \Omega(n^2)$.

Proof.

Let $c = 15$ and $n_0 = 1$.
Must show that $0 \leq cg(n)$ and $cg(n) \leq f(n)$.
$0 \leq 15n^3$ for all $n \geq n_0 = 1$.
$cg(n) = 15n^2 \leq 15n^3 \leq 15n^3 + n^2 + 4 = f(n)$
\(\Omega(n) \) recap

- \(T(n) = 15n^3 + n^2 + 4 \)
- \(T(n) = \Omega(n^3) \).
- \(T(n) = \Omega(n^2) \).
- \(\Omega(n) \) is a lower bound
Definition

\[f(n) \in \Theta(g(n)) \] if there exists constants \(c_1 > 0, \ c_2 > 0 \) and \(n_0 > 0 \) such that \(c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \) for all \(n \geq n_0 \)

- “Theta of n”
- \(\Theta(g(n)) \) is tight bound on the growth of a function, \(f(n) \).
- Can also say, \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
- \(T(n) = 15n^3 + n^2 + 4 \)
- \(T(n) = \Theta(n^3) \).
Prove that if $T(n) = 15n^3 + n^2 + 4$, $T(n) = \Theta(n^3)$.

Proof.

Let $c_1 = 15$, $c_2 = 20$ and $n_0 = 1$.

Must show that $c_1g(n) \leq f(n)$ and $f(n) \leq c_2g(n)$.

$c_1g(n) = 15n^3 \leq 15n^3 + n^2 + 4 = f(n)$.

$f(n) = 15n^3 + n^2 + 4 \leq 15n^3 + n^3 + 4n^3 = 20n^3 = c_2g(n)$.

Asymptotic Notation Examples

- \(T(n) = 15n^3 + n^2 + 4 = \Theta(n^3) \)
- \(T(n) = 2n^3 + 4n + 4 = \Theta(n^3) \)
- \(T(n) = 2n^2 + 4n + 4 = \Theta(n^2) \)

- \(T(n) = 15n^3 + n^2 + 4 = \Theta(2n^3 + n^2) \)
 - While true, this is never done.

- Note: \(f = \Theta(g) \) is a common shorthand for \(f(n) = \Theta(g(n)) \)
Asymptotic Notation Examples

- $T(n) = n^3 + n \log n = \Theta(n^3)$?
- If $n \log n < n^3$ for all $n > n_0$, then we can use the proof structure from before.
- Let $c_1 = 1$.
- $c_1 g(n) = n^3 \leq n^3 + n \log n$.
- Let $c_2 = 2$.
- $n^3 + n \log n \leq n^3 + n^3 = 2n^3 = c_2 g(n)$
Runtime at small n

- $T_1(n) = n^3 = \Theta(n^3)$
- $T_2(n) = 2n + 100 = \Theta(n)$

<table>
<thead>
<tr>
<th>n</th>
<th>$T_1(n)$</th>
<th>$T_2(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>104</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>106</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>108</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>216</td>
<td>112</td>
</tr>
</tbody>
</table>
Asymptotic Notation Properties

- \(f = \Theta(h) \) and \(g = \Theta(h) \) then \(f + g = \Theta(h) \)
 - \(f = \Theta(h) = c_1 h + \text{slack} \).
 - \(g = \Theta(h) = c_2 h + \text{slack} \).
 - \(f + g = (c_1 + c_2) h + \text{slack} \).

- \(\Theta(f + g) = \Theta(\max(f, g)) \)
 - \(f = n^3, \ g = n \log n, \ h = f + g = n^3 + n \log n \)
 - \(\Theta(h) = \Theta(f + g) = \Theta(\max(f, g)) = \Theta(n^3) \)
Orders of growth

- Behavior of a function as $n \rightarrow \infty$.

 - if $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = \infty$ then $f(n) = \Omega(g(n))$
 - “f is bigger than g”, or “f dominates g”
 - if $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = 0$ then $f(n) = O(g(n))$
 - “f is smaller than g”, or “g dominates f”
 - if $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = c$ then $f(n) = \Theta(g(n))$
 - “f is the same as g”
Orders of growth examples

- Show that $n^2 = \Omega(n)$
- Prove it to yourself first.

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>$n^2 - n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>30</td>
</tr>
</tbody>
</table>
Orders of growth examples

- Show that $n^2 = \Omega(n)$.
- Evaluate $\lim_{n \to \infty} \frac{f(n)}{g(n)}$.
- $\lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty$ so $n^2 = \Omega(n)$.
Show that $n = \Omega(\log n)$.

Prove it to yourself first.

<table>
<thead>
<tr>
<th>n</th>
<th>$\log n$</th>
<th>$n - \log n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>58</td>
</tr>
</tbody>
</table>
Orders of growth example.

- Show that $n^2 = \Omega(n)$.
- Evaluate $\lim_{n \to \infty} \frac{f(n)}{g(n)}$
- $\lim_{n \to \infty} \frac{n}{\log n}$
- l’Hôpital’s rule. (from Calculus)
- If $\lim_{n \to c} f(n) = \infty$ and $\lim_{n \to c} g(n) = \infty$, then
 $\lim_{n \to c} \frac{f(n)}{g(n)} = \lim_{n \to c} \frac{f'(n)}{g'(n)}$
- $\lim_{n \to \infty} \frac{n}{\log n} = \lim_{n \to \infty} \frac{1}{1/n}$
- $\lim_{n \to \infty} \frac{n}{\log n} = \lim_{n \to \infty} n = \infty$
- So, $n = \Omega(\log n)$
Order of growth of a summation

\[S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

Even if we don’t know this, we can show that \(S(n) = \Theta(n^2) \)

Proof.

Show \(S(n) = O(n^2) \).

\[S(n) = \sum_{i=1}^{n} i \leq \sum_{i=1}^{n} n = n \cdot n = n^2 \]

\[S(n) \leq n^2 \]
Order of growth of a summation

Proof.

Show $S(n) = \Omega(n^2)$.

$S(n) = \sum_{i=1}^{n} i \geq \sum_{i=n/2+1}^{n} i \geq \sum_{i=n/2+1}^{n} \frac{n}{2}$

$\sum_{i=n/2+1}^{n} \frac{n}{2} = \frac{n}{2} \cdot \frac{n}{2} = \frac{n^2}{4}$

Thus, $S(n) = \Omega(n^2)$, and $S(n) = \Theta(n^2)$.
Arithmetic series

\[S(n) = \sum_{i=1}^{n} i \]

\[S(6) = \sum_{i=1}^{6} i = 1 + 2 + 3 + 4 + 5 + 6 \]
\[= (1 + 6) + (2 + 5) + (3 + 4) \]
\[= 3 \times 7 \]
Arithmetic series

\[S(n) = \sum_{i=1}^{n} i \]

\[S(n) = \sum_{i=1}^{n} i = 1 + 2 + \ldots + n \]
\[= (1 + n) + (2 + (n - 1)) + \ldots + (\frac{n}{2} + \frac{n}{2} + 1) \]
\[= \frac{n}{2}(n + 1) \]
Inductive Proof

\[S(n) = \sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \]

\[\text{Base Case: } S(1) \]

\[S(1) = \sum_{i=1}^{1} i = \frac{1}{2} \cdot 1(1 + 1) \]
\[= \frac{2}{2} = 1 \]
Inductive Step: Assume true for $n \leq n_0 = 1$. Prove for $n + 1$.

\[
S(n + 1) = \sum_{i=1}^{n+1} i
\]

\[
= (n + 1) + \sum_{i=1}^{n} i
\]

\[
= (n + 1) + \frac{n(n + 1)}{2}
\]

\[
= \frac{2(n + 1)}{2} + \frac{n(n + 1)}{2}
\]

\[
= \frac{2(n + 1) + n(n + 1)}{2}
\]

\[
= \frac{(n + 2)(n + 1)}{2}
\]

\[
= \frac{(n + 1)((n + 1) + 1)}{2}
\]
The structure of an inductive proof can be applied to structures.

- Sometimes using the construct of **Loop invariants**.
- Initialization = Base Case
- Maintenance = Inductive Step
- Termination
Insertion Sort Pseudocode

InsertionSort(A)

```plaintext
for j ← 2 to size(A) do
    key ← A[j]
    i ← j − 1
    while i > 0 and A[i] > key do
        {Slide the array to the right}
        A[i + 1] ← A[i]
        i ← i + 1
    end while
    A[i + 1] ← key
end for
```
Insertion Sort

Start of the Loop

key: 2 j i

A[i]: 5 2 4 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

A[i]: 5 2 4 6 1 3
idx: 1 2 3 4 5 6

key: 2
j i

A[i]: 5 2 4 6 1 3
idx: 1 2 3 4 5 6
Insertion Sort

key: 2

A[i]: 5 5 4 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 2

A[i]: 2 5 4 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

Start of the Loop

key: 4

A[i]: 2 5 4 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key:4

j i

A[i]: 2 5 4 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 4 j i

A[i]: 2 5 5 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 4

A[i]: 2 5 5 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 4

A[i]: 2 4 5 6 1 3
idx: 1 2 3 4 5 6
Insertion Sort

Start of the Loop

key: 6 j i

A[i]: 2 4 5 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 6 j i

A[i]: 2 4 5 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 6 \hspace{1cm} j \hspace{1cm} i

A[i]: \hspace{0.5cm} 2 \hspace{0.5cm} 4 \hspace{0.5cm} 5 \hspace{0.5cm} 6 \hspace{0.5cm} 1 \hspace{0.5cm} 3

idx: \hspace{0.5cm} 1 \hspace{0.5cm} 2 \hspace{0.5cm} 3 \hspace{0.5cm} 4 \hspace{0.5cm} 5 \hspace{0.5cm} 6
Insertion Sort

Start of the Loop

key: 1

j i

A[i]: 2 4 5 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 1

j i

A[i]: 2 4 5 6 1 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 1 j i

A[i]: 2 4 5 6 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key:1 j i

A[i]: 2 4 5 6 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 1 j i

A[i]: 2 4 5 5 6 3

dx: 1 2 3 4 5 6
Insertion Sort

key: 1 j i

A[i]: 2 4 5 5 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 1 j i

A[i]: 2 4 4 5 6 3

ddx: 1 2 3 4 5 6
Insertion Sort

key: 1 j i

A[i]: 2 4 4 5 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 1
j i

A[i]: 2 2 4 5 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 1 j i

A[i]: 1 2 4 5 6 3

idx: 1 2 3 4 5 6
Insertion Sort

Start of the Loop

key: 3 j i

A[i]: 1 2 4 5 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 3

A[i]: 1 2 4 5 6 3

idx: 1 2 3 4 5 6
Insertion Sort

key: 3 j i

A[i]: 1 2 4 5 6 6

idx: 1 2 3 4 5 6
Insertion Sort

key: 3

j i

A[i]: 1 2 4 5 6 6

idx: 1 2 3 4 5 6
Insertion Sort

key: 3 j i

A[i]: 1 2 4 5 5 6

idx: 1 2 3 4 5 6
Insertion Sort

key: 3 j i

A[i]: 1 2 4 5 5 6

idx: 1 2 3 4 5 6
Insertion Sort

<table>
<thead>
<tr>
<th>key:3</th>
<th>j</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[i]:</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>idx:</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Insertion Sort

key: 3

j i

A[i]: 1 2 4 4 5 6

idx: 1 2 3 4 5 6
key:3

\[A[i]: 1 \ 2 \ 3 \ 4 \ 5 \ 6 \]

\[\text{idx: } 1 \ 2 \ 3 \ 4 \ 5 \ 6 \]
Insertion Sort

Termination

key: 3

j i

A[i]: 1 2 3 4 5 6

idx: 1 2 3 4 5 6
At the start of the for loop, the subarray A[1..j-1] is sorted.

- “Sorted” here means contains the initial items of A[1..j-1] in ascending order.
Induction Proof: At the start of the for loop, the subarray $A[1..j-1]$ is sorted.

Base Case: At initialization $j = 2$.
- A single element is in sorted order.
InsertionSort Induction Proof

- **Induction Proof:** At the start of the for loop, the subarray $A[1..j-1]$ is sorted.
- **Induction Step:** Assume true for $j > n_0$. Prove for $j + 1$.
 1. Show that $A[j+1]$ is put in the correct position.
InsertionSort Induction Proof

- **Induction Proof:** At the start of the for loop, the subarray $A_{1..j-1}$ is sorted.

- **Induction Step:** Assume true for $j > n_0$. Prove for $j + 1$.
 1. Show that A_{j+1} is put in the "correct" position.
 - The index i is used to find the correct position to insert A_{j+1}, specifically, the position i such that, $A[i] \leq A[j+1] < A[i+2]$.
 - At the end of the internal while loop, i points to element with the greatest index smaller than $A[j+1]$, or 0 if no such element exists.
 - A_{j+1} is moved to the position $i + 1$.
 - Because $A_{1..j}$ is sorted, every element $A_{1..i}$ is smaller than $A[j]$ and every element $A[(i+1)..j]$ is larger than $A[j+1]$.
 - Therefore A_{j+1} is put in the correct position.
Induction Proof: At the start of the for loop, the subarray $A[1..j-1]$ is sorted.

Induction Step: Assume true for $j > n_0$. Prove for $j + 1$.

 - At the end of the internal while loop, the elements $A[i + 1..j]$ have been each been shifted up one position to $A[i + 1..j + 1]$. Therefore $A[i+2..j+1]$ is sorted.
 - $A[1..i]$ has not been modified. Since $A[1..j]$ was sorted at the start of the loop, the subarray $A[1..i]$ remains sorted.
Induction Proof: At the start of the for loop, the subarray $A[1..j-1]$ is sorted.

Termination: At the termination of the for loop, $j = n + 1$, therefore $A[1..n]$ is sorted.
Homework 2 is posted to the course website.
Next time (9/7)
 • Recursion
For Next Class
 • Read Sections 2.1, 2.2, 7.1, 7.2, 7.4