Open Addressing Hashing
Today

- Multithreading
Two Styles of Threading

- Shared Memory – Every thread can access the same memory (data).
- Distributed Memory – Each thread has its own partition of the memory
Nested Parallelism

- Call a method.
- Don’t wait for it to return.
Parallel Loops

- Just like a for loop
- Loop executions run concurrently
Parallelization keywords

- **spawn** – Start a new thread running
- **sync** – Wait here until all threads finish
- **parallel** – indicates a parallel loop
Fibonacci example for parallelism

\[
\text{FIB}(n) \\
\text{if } n \leq 1 \text{ then} \\
\hspace{1cm} \text{return } n \\
\text{else} \\
\hspace{1cm} x = \text{FIB}(n-1) \\
\hspace{1cm} y = \text{FIB}(n-2) \\
\hspace{1cm} \text{return } x + y \\
\text{end if}
\]
Fibonacci example for paralleism

\[
\text{FIB}(n)
\]

\[
\begin{align*}
\text{if } n & \leq 1 \text{ then} \\
& \quad \text{return } n \\
\text{else} \\
& \quad x = \text{spawn } \text{FIB}(n-1) \\
& \quad y = \text{FIB}(n-2) \\
& \quad \text{sync} \\
& \quad \text{return } x + y \\
\text{end if}
\end{align*}
\]
Recursion of Fib(6)
While uses 17 commands, the critical path – the longest from initial strand to the final strand – is 8 units long. (Can be found using a BFS.)
Some Terminology

- **Work** is the number of calls to a function that are made (T_1).
- **Span** is the length of the critical path (T_∞).

The fastest a process can run on a multicore processor with P threads is $T_P \geq T_1/P$.

- The **speedup** is T_1/T_P. If the speedup is P we have **perfect linear speedup**.

- The **parallelism** of an algorithm is T_1/T_∞. This is the maximum possible speedup that an algorithm can achieve by adding more processors.
Most of what we’ve done so far has been the analysis and optimization of *work*.

Analyzing *span* is different. The total span of a parallel algorithm with two components A and B is \(\max(T_\infty(A), T_\infty(B)) \).

For P-Fib(x):

\[
T_\infty(n) = \max(T_\infty(n - 1), T_\infty(n - 2)) + \Theta(1) \quad (1)
\]
\[
= T_\infty(n - 1) + \Theta(1) \quad (2)
\]
Most of what we’ve done so far has been the analysis and optimization of work.

Analyzing span is different. The total span of a parallel algorithm with two components A and B is \(\max(T_{\infty}(A), T_{\infty}(B)) \).

For P-Fib(x):

\[
T_{\infty}(n) = \max(T_{\infty}(n - 1), T_{\infty}(n - 2)) + \Theta(1) \quad (1)
\]

\[
= T_{\infty}(n - 1) + \Theta(1) \quad (2)
\]

\[
= \Theta(n) \quad (3)
\]

Huge Parallelism: \(T_1(n)/T_{\infty}(n) = \theta(\phi^n/n) \)
If the iterations of a loop don't depend on each other, they can run in parallel.

For example, multiply a matrix A by a vector x.

$$y_i = \sum_{j=1}^{n} A_{ij}x_j$$
\[y_i = \sum_{j=1}^{n} A_{ij} x_j \]

Mat-Vec(A,x)

\[
\begin{align*}
\text{n} &= \text{A.rows} \\
\text{y} &= \text{new vector with n cells} \\
\text{for } i &= 1 \text{ to } n \text{ do} \\
 \quad y_i &= 0 \\
\text{end for} \\
\text{for } i &= 1 \text{ to } n \text{ do} \\
 \quad \text{for } j &= 1 \text{ to } n \text{ do} \\
 \quad \quad y_i &= y_i + a_{ij} x_j \\
 \quad \text{end for} \\
\text{end for}
\end{align*}
\]
\[y_i = \sum_{j=1}^{n} A_{ij} x_j \]

\textbf{Mat-Vec}(A,x)

n = A.rows
y = new vector with n cells

\textbf{for parallel} i = 1 to n \textbf{do}
\hspace{1em} y_i = 0
\textbf{end for}

\textbf{for parallel} i = 1 to n \textbf{do}
\hspace{1em} for j = 1 to n \textbf{do}
\hspace{2em} y_i = y_i + a_{ij} x_j
\hspace{1em} \textbf{end for}
\textbf{end for}
Race Conditions

```
Race()

x = 0
for parallel i = 1 to 2 do
    x = x + 1
end for
print x
```

Need to make sure that the two threads are independent – no writing to memory that other threads are reading from.
Multithreaded Merge Sort

\[
\text{Merge-Sort}(A, p, r) \\
\text{if } p < r \text{ then} \\
\quad q = \lfloor (p + r/2) \rfloor \\
\quad \text{spawn } \text{Merge-Sort}(A, p, q) \\
\quad \text{Merge-Sort}(A, q + 1, r) \\
\quad \text{sync} \\
\quad \text{Merge}(A, p, q, r) \\
\text{end if}
\]

Spawn two recursive calls to Merge Sort.
No problem
Work

\[MS_1(n) = 2MS_1(n/2) + \Theta(n) \]
\[= \Theta(n \log n) \]

Span

\[MS_\infty(n) = MS_\infty(n/2) + \Theta(n) \]
\[= \Theta(n) \]

Parallelization

\[\frac{MS_1}{MS_\infty} = \frac{\Theta(n \log n)}{\Theta(n)} = \Theta(\log n) \]
Serial Merge is dominating the performance.

How can we parallelize merge?

Divide-and-conquer Merge
- Put the middle element, z, of the smaller of the two lists in the correct position
- Merge the subarrays containing elements smaller than z
- Merge the subarrays containing elements greater than z
Parallel Merge

\[\text{P-Merge}(T, p_1, r_1, p_2, r_2, A, p_3) \]

\[
\begin{align*}
n_1 &= r_1 - p_1 + 1 \\
n_2 &= r_2 - p_2 + 1 \\
\text{if } n_1 < n_2 &\text{ then} \\
&\quad \text{swap } p's, r's \text{ and } n's \\
\text{end if} \\
\text{if } n_1 == 0 &\text{ then} \\
&\quad \text{return} \\
\text{else} \\
&\quad q_1 = \lfloor (p_1 + r_1)/2 \rfloor \\
&\quad q_2 = \text{Binary-Search}(T[q_1], T, p_2, r_2) \\
&\quad q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2) \quad // \text{Where to put } T[q_1] \\
&\quad A[q_3] = T[q_1] \\
&\quad \text{spawn P-Merge}(T, p_1, q_1 - 1, p_2, q_2 - 1, A, p_3) \\
&\quad \text{P-Merge}(T, q_1 + 1, r_1, q_2 + 1, r_2, A, q_3 + 1) \\
&\quad \text{sync} \\
\text{end if}
\]
Parallel Merge

Span

- Identify the **maximum** number of elements in the largest call to **P-Merge**.
- The worst case merges \(n_1/2 \) elements (from the larger subarray) with all \(n_2 \) elements (from the smaller subarray).

\[
\lceil n_1/2 \rceil + n_2 \leq n_1/2 + n_2/2 + n_2/2 \\
= (n_1 + n_2)/2 + n_2/2 \\
\leq n/2 + n/4 \\
= 3n/4
\]

\[
PM_\infty(n) = PM_\infty(3n/4) + \Theta(\log n) \\
= \Theta(\log^2 n)
\]
Parallel Merge

Work

\[PM_1(n) = PM_1 = PM_1(\alpha n) + PM_1((1 - \alpha)n) + O(\log n) \]

- \(PM_1 \) is clearly \(\Omega(n) \).
- Can show that \(PM_1(n) \leq c_1 n - c_2 \log n \) for constants \(c_1, c_2 \) proving that \(PM_1 = O(n) \).
- Thus, \(PM_1 = \Theta(n) \).
Parallel Merge Sort

\textbf{P-MergeSort}(A, p, r, B, s)

\begin{align*}
n &= r - p + 1 \\
\text{if } n &= 1 	ext{ then} \\
\text{else} \\
&\quad \text{let } T[n] \text{ be a new array} \\
q &= \lfloor (p + r)/2 \rfloor \\
q' &= q - p + 1 \\
\text{spawn } &\text{P-Merge-Sort}(A, p, q, T, 1) \\
&\text{P-Merge-Sort}(A, q + 1, r, T, q' + 1) \\
\text{sync} \\
&\text{P-Merge}(T, 1, q', q' + 1, n, B, s)
\end{align*}

end if
Parallel Merge Sort

\[
PM_{\text{MergeSort}_1}(n) = 2PM_{\text{MergeSort}_1}(n/2) + PM_1(n) \\
= 2PM_{\text{MergeSort}_1}(n/2) + \Theta(n) \\
= \Theta(n \log n)
\]
Parallel Merge Sort

Span

\[PMergeSort_\infty(n) = PMergeSort_\infty(n/2) + PM_{\infty}(n) \]
\[= PMergeSort_\infty(n/2) + \Theta(\log^2 n) \]
\[= \Theta(\log^3 n) \]

Parallelism

\[PMergeSort_1(n)/PMergeSort_\infty(n) = \Theta(n \log n)/\Theta(\log^3 n) \]
\[= \Theta(n/ \log^2 n) \]
Bye

- Next time
- NP-Completeness