Last Time

- Linear Time Sorting
 - Counting Sort
 - Radix Sort
 - Bucket Sort
Data structure is a set of elements and the relationship between them.

The appropriate data structure for a task is determined by the functions it needs to support.
Data Structures

Data structure is a set of elements and the relationship between them.

The appropriate data structure for a task is determined by the functions it needs to support.

A dictionary supports (minimally) Insert, Search and Delete.

Other data structures might need Minimum, Maximum, etc.
- Data structure is a set of elements and the relationship between them.

- The appropriate data structure for a task is determined by the functions it needs to support.

- A dictionary supports (minimally) **Insert**, **Search** and **Delete**.

- Other data structures might need **Minimum**, **Maximum**, etc.

- For a restricted domain, $D = \{1, \ldots, k\}$, we can use an array, $A[1..k]$. This allows **Insert**, **Search** and **Delete** to be $O(1)$.
Data structure is a set of elements and the relationship between them.

The appropriate data structure for a task is determined by the functions it needs to support.

A **dictionary** supports (minimally) **Insert**, **Search** and **Delete**.

Other data structures might need **Minimum**, **Maximum**, etc.

For a **restricted** domain, \(D = \{1, \ldots, k\} \), we can use an array, \(A[1..k] \). This allows **Insert**, **Search** and **Delete** to be \(O(1) \).

Aside: Hashing attempts to map an unrestricted domain to a restricted one.
Binary Search Trees (BSTs) are a simple and efficient implementation of a dictionary.

- A BST is a rooted binary tree.
- The keys are at the nodes.
- For every node, v, the keys of the left subtree $\leq key(v)$
- For every node, v, the keys of the right subtree $\geq key(v)$
Binary Search Trees (BSTs) are a simple and efficient implementation of a dictionary.

- A BST is a rooted binary tree.
- The keys are at the nodes.
- For every node, v, the keys of the left subtree $\leq \text{key}(v)$
- For every node, v, the keys of the right subtree $\geq \text{key}(v)$
- Binary Search Trees are not, by definition, balanced.
Binary Search Tree Data Structure

- Key
- Parent
- Left
- Right
Binary Search Tree Example

```
root 10
    5 20
     8
   1
```
Binary Search Tree Example
Not a Binary Search Tree Example

root

null

10

5

20

1

8
Not a Binary Search Tree Example

root 10
null

5 20 8

1
• The height of a BST is at most $n - 1$.
• The height of a BST is at least $\log n$.
Sorting with a BST

- Binary Search Trees are sorted.
- Constructing a sorted array is $\Theta(n)$

`TRAVERSE(T)`

```
if T.root then
   TRAVERSE(T.left)
   PRINT T.key
   TRAVERSE(T.right)
end if
```
Binary Search Trees are sorted.

Constructing a sorted array is \(\Theta(n) \)

\[
\text{TRaverse}(T)
\]

\[
\text{if } T.\text{root} \text{ then}
\]
\[
\text{TRaverse}(T.\text{left})
\]
\[
\text{PRINT } T.\text{key}
\]
\[
\text{TRaverse}(T.\text{right})
\]
\[
\text{end if}
\]

Can we prove that this is correct and \(\Theta(n) \)?
Searching a BST

Search\((T, x) \)

\[
\text{if } T \text{ then}
\]
\[
\quad \text{if } T\.\text{key} = x \text{ then}
\]
\[
\quad \quad \text{return } T
\]
\[
\quad \text{else}
\]
\[
\quad \quad \text{if } T\.\text{key} < x \text{ then}
\]
\[
\quad \quad \quad \text{return } \text{Search}(T\.\text{left}, x)
\]
\[
\quad \quad \text{else}
\]
\[
\quad \quad \quad \text{return } \text{Search}(T\.\text{right}, x)
\]
\[
\quad \text{end if}
\]
\[
\text{end if}
\]
\[
\text{else}
\]
\[
\quad \text{return } \text{null}
\]
\[
\text{end if}
\]
Searching a BST

- $\text{Search}(T,x)$ is $O(\text{height})$
- If balanced, $\text{height} = \log n$, so $O(\log n)$.
- Worst case scenario, a sequential search, $O(n)$.
Finding specific elements in a BST

- **Minimum**(T) = O(height). Traverse to the left.
- **Maximum**(T) = O(height). Traverse to the right.
- **Successor**(T) - Find the node with smallest key greater than T.key.
Successor

Successor\((T) \)

If \(T \) has a right child, then return \texttt{Minimum}(\(T.\text{right} \))

If \(T \) has no right child, and is a left child, then return \(T.\text{parent} \)

If \(T \) has no right child and is a right child, then traverse up until a left child is found - then this node’s parent.

Else \(T \) has no successor.

- **\texttt{Successor}(T) = O(\text{height})**
Inserting an Element into a BST

Insert(T,x)

if T then
 if T.key ≤ x then
 Insert(T.left, x)
 else
 Insert(T.right, x)
 end if
else
 T ← NewNode(x).
end if

- Insert is a lot like Search.
- Insert(T,x) = \(O(\text{height}) \)
To build a BST, INSERT \(n \) random elements in order to an empty BST.

It takes \(O(n \log n) \) to build a BST from such a set of random elements.

Run Insert \(n \) times.

\[\sum_{i=1}^{n} \log i = n \log n \]

Expected height \(= O(\log n) \)
Building a BST

- To build a BST, **INSERT** \(n \) random elements in order to an empty BST.
- It takes \(O(n \log n) \) to build a BST from such a set of random elements.
- Run Insert \(n \) times.
- \(\sum_{i=1}^{n} \log i = n \log n \)
- Expected height = \(O(\log n) \)
- Can a BST be constructed in less than \(O(n \log n) \)?
To build a BST, **INSERT** \(n \) random elements in order to an empty BST.

It takes \(O(n \log n) \) to build a BST from such a set of random elements.

Run Insert \(n \) times.

\[
\sum_{i=1}^{n} \log i = n \log n
\]

Expected **height** = \(O(\log n) \)

Can a BST be constructed in less than \(O(n \log n) \)?

No. It’s equivalent to a comparison sort. Since Comparison sorting is \(\Omega(n \log n) \), constructing a BST is \(\Omega(n \log n) \).
DELETE(T, v)

Delete(T, v)

- If \(v \) is a leaf, delete \(v \).
- If \(v \) has 1 child, delete \(v \), replace \(v \) with its child.
- If \(v \) has 2 children, swap \(v \) with **Successor**(\(v \)), then **Delete**(\(v \)).

- How long does each case take?
$\text{DELETE}(T, v)$

- If v is a leaf, delete v.
- If v has 1 child, delete v, replace v with its child.
- If v has 2 children, swap v with $\text{SUCCESSOR}(v)$, then $\text{DELETE}(v)$.

- How long does each case take?
- How can we be sure $\text{DELETE}(v)$ terminates?
DELETE(T, v)

If v is a leaf, delete v.
If v has 1 child, delete v, replace v with its child.
If v has 2 children, swap v with $\text{Successor}(v)$, then $\text{DELETE}(v)$.

- How long does each case take?
- How can we be sure $\text{DELETE}(v)$ terminates?
- Show that this holds the BST properties.
Recap

- Binary Search Trees are an efficient, simple dictionary data structure.
- Construction $O(n \log n)$
- Insertion $O(\log n)$
- Search $O(\log n)$
- Deletion $O(\log n)$
- Binary Search Trees are sorted representations of data.
Bye

- Next time
 - Heaps.