Lecture 10: Balanced Binary Search Trees
CSCI 700 - Algorithms I

Andrew Rosenberg
Last Time

- Balanced Binary Search Trees – AVL Trees
Today

- More Balanced Binary Search Trees
 - Red-Black Trees
 - 2-3 Trees
 - B-Trees
AVL Trees are **Binary Search Trees**

- Maintain near perfect balance on insert and delete
- Rotation operations
- Require storage at each node of balance factor $bf \in \{-1, 0, 1\}$ or height $h \in \mathbb{Z}$
Red-Black Trees are **Binary Search Trees**

In addition to **BST Properties**, they also satisfy **Red-Black Tree Properties (or RBT Properties)**

1. Every node is either red or black. (1-bit storage)
2. The root is black
3. Nulls (below leaves) are black.
4. If a node is red, all of its children are black.
5. For each node, all paths from the node to descendent leaves contain the same number of black nodes.
 - We’ll call this **black-height** of a node $bh(T)$.
Example of a Red-Black Tree

$$h = 4$$
Example of a Red-Black Tree

```
7
 /    \
3     18
 |      |
NIL    NIL
```

```
10
 /    \
8     11
 |      |
NIL    NIL
```

```
22
 /    \
NIL    NIL
```

```
26
 /    \
NIL    NIL
```

bh values:
- 7: 2
- 3: 1
- 18: 2
- 10: 1
- 8: 1
- 11: 1
- 22: 0
- 26: 0
We can track the balance of the whole tree using only local information about the color of a node and its parent and children.

Color information is stored in a single bit.

Persistent data structures In AVL trees deletion may require up to $O(\log n)$ rotations. In R-B Trees it will require $O(1)$. Therefore to store rollback information requires $\log n$ times the space when implemented using an AVL tree.
A red-black tree with n internal nodes has height at most \(2 \log (n + 1)\).

■ Show that a subtree, T, has at least \(2^{bh(T)} - 1\) internal nodes.
■ Induction on height of T.
■ Base case: If T.height == 0, then T is a leaf. Therefore T contains 0 internal nodes. \(2^{bh(T)} - 1 = 2^0 - 1 = 0\).
A red-black tree with n internal nodes has height at most $2 \log (n + 1)$.

- Show that a subtree, T, has at least $2^{bh(T)} - 1$ internal nodes.
- Induction on height of T.
- Inductive step: T has positive height, and is an internal node with 2 children. Each child has a black-height of $bh(T)$ (if the child is red) or $bh(T) - 1$ (if the child is black).
A red-black tree with n internal nodes has height at most $2 \log (n + 1)$.

- Show that a subtree, T, has at least $2^{bh(T)} - 1$ internal nodes.
- Induction on height of T.
- Inductive step: T has positive height, and is an internal node with 2 children. Each child has a black-height of $bh(T)$ (if the child is red) or $bh(T) - 1$ (if the child is black).
- By induction, each child has at least $2^{bh(T) - 1} - 1$ internal nodes.
Theorem

A red-black tree with \(n \) internal nodes has height at most \(2 \log (n + 1) \).

- Show that a subtree, \(T \), has at least \(2^{bh(T)} - 1 \) internal nodes.
- Induction on height of \(T \).
- Inductive step: \(T \) has positive height, and is an internal node with 2 children. Each child has a black-height of \(bh(T) \) (if the child is red) or \(bh(T) - 1 \) (if the child is black).
- By induction, each child has at least \(2^{bh(T)-1} - 1 \) internal nodes.
- Therefore, \(T \) has at least
\[
(2^{bh(T)-1} - 1) + (2^{bh(T)-1} - 1) + 1 = 2^{bh(T)} - 1
\] internal nodes.
Theorem

A red-black tree with \(n \) internal nodes has height at most \(2 \log (n + 1) \).

- Show that a subtree, \(T \), has at least \(2^{bh(T)} - 1 \) internal nodes.
- Let \(h \) be the height of \(T \).
Theorem

A red-black tree with n internal nodes has height at most $2 \log (n + 1)$.

- Show that a subtree, T, has at least $2^{bh(T)} - 1$ internal nodes.
- Let h be the height of T.
- At least half of the items on any path from T to a leaf must be black (Property 4).
Theorem

A red-black tree with \(n \) internal nodes has height at most \(2 \log (n + 1) \).

- Show that a subtree, \(T \), has at least \(2^{bh(T)} - 1 \) internal nodes.
- Let \(h \) be the height of \(T \).
- At least half of the items on any path from \(T \) to a leaf must be black (Property 4).
- Thus \(bh(T) \geq h/2 \)
Height of a Red-Black Tree

Theorem

A red-black tree with n internal nodes has height at most $2 \log (n + 1)$.

- Show that a subtree, T, has at least $2^{bh(T)} - 1$ internal nodes.
- Let h be the height of T.
- At least half of the items on any path from T to a leaf must be black (Property 4).
- Thus $bh(T) \geq h/2$
- So....$n \geq 2^{h/2} - 1$
- $n + 1 \geq 2^{h/2}$.
- $\log (n + 1) \geq h/2$
- $2 \log (n + 1) \geq h$
A red-black tree with \(n \) internal nodes has height at most
\[2 \log (n + 1). \]

- Show that a subtree, \(T \), has at least \(2^{bh(T)} - 1 \) internal nodes.
- Let \(h \) be the height of \(T \).
- At least half of the items on any path from \(T \) to a leaf must be black (Property 4).
- Thus \(bh(T) \geq h/2 \)
- So....\(n \geq 2^{h/2} - 1 \)
- \(n + 1 \geq 2^{h/2} \).
- \(\log (n + 1) \geq h/2 \)
- \(2 \log (n + 1) \geq h \)
- Runtime in \(O(h) = O(\log n) \)
Search, Min, Max, Successor, and Predecessor all run in $O(h) = O(\log n)$ time, on a red-black tree with n nodes.
The operation itself is unchanged.

May require color changes.

May require rotations to maintain Property 4 (If a node is red, it’s children are black).
Rotation Review

- Rotation maintains the **BST property**.
- Rotations take $O(1)$.
Red-Black Tree Insertion

- Idea: Insert x into the tree T.
- Color x red. – Thus $bh(T)$ is maintained for all subtrees that x is a member of.
- However, Property 4 – If a node is red, all of its children are black – may not hold.
Red-Black Tree Insertion

- Idea: Insert x in to the tree T.
- Color x red. – Thus $bh(T)$ is maintained for all subtrees that x is a member of.
- However, Property 4 – If a node is red, all of its children are black – may not hold
- Recolor and rotate until the **RBT Property** is restored.
Example:
Example:

- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
Example:

- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- `RIGHT-ROTATE(18)`.
Example:

- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **RIGHT-ROTATE(18).**
- **LEFT-ROTATE(7)** and recolor.
Example:

- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **RIGHT-ROTATE(18)**.
- **LEFT-ROTATE(7)** and recolor.
Red-Black Insert Pseudocode

```plaintext
RB-Insert(T, x)
Insert(T, x)
  x.Color ← RED
while x ≠ T and x.parent.color = RED do
  if IsLeftChild(x.parent) then
    T.color ← BLACK
    y ← x.parent.parent.right
    if y.color = RED then
      Case 1
    else
      if IsRightChild(x) then
        Case 2
      end if
      Case 3
    end if
  else
    swap left and right
  end if
end while
```
Red-Black Case 1

(Or, children of A are swapped.)

Push C’s black onto A and D, and recurse, since C’s parent may be red.
Red-Black Case 2

\textbf{LEFT-ROTATE}(A)

Transform to Case 3.
Red-Black Case 3

RIGHT-ROTATE(C)

Done! No more violations of RB property 3 are possible.
Red-Black Insert Analysis

- First traverse up the tree recoloring.
- If Case 2 or 3 occurs, rotate once or twice.
Red-Black Insert Analysis

- First traverse up the tree recoloring.
- If Case 2 or 3 occurs, rotate once or twice.
- Runtime: $O(h) = O(\log n)$ and $O(1)$ rotations.

- Red-Black Delete has the same running time and number of rotations as insert. Refer to the text for this.
2-3 Trees are Search Trees where each node can have 1 or 2 keys and 2 or 3 children.
Example 2-3 Trees
Each leaf has the same depth and contains 1 or 2 keys.

Each interior node:
- contains 1 key and has 2 children (2-node)
- contains 2 key and has 3 children (3-node)

In a 2-node T with key a
- each key in its left subtree has key $\leq a$
- each key in its right subtree has key $> a$

In a 3-node T with keys a and b
- each key in its left subtree has key $\leq a$
- each key in its middle subtree has $a < key \leq b$
- each key in its right subtree has key $> b$
What is the height, h of a tree containing n values?
What is the height, \(h \) of a tree containing \(n \) values?

- Each internal node can have up to 3 children.
- There are \(3^{h-1} \) leaves.
What is the height, h of a tree containing n values?

Each internal node can have up to 3 children.

There are 3^{h-1} leaves.

Each leaf can have up to 2 values

$n \leq 2 \times 3^{h-1}$

$log_6 n - 1 \leq h$
What is the height, h, of a tree containing n values?

Each internal node has at least two children.

There are at least 2^{h-1} leaves.
What is the height, h of a tree containing n values?
- Each internal node has at least to 2 children.
- There are at least 2^{h-1} leaves.
- Each leaf has at least 1 value
- $n \geq 1 \times 2^{h-1}$
- $\log_2 n - 1 \geq h$
What is the height, \(h \) of a tree containing \(n \) values?

- Each internal node has at least two children.
- There are at least \(2^{h-1} \) leaves.
- Each leaf has at least 1 value

\[
n \geq 1 \times 2^{h-1}
\]
\[
\log_2 n - 1 \geq h
\]
\[
\log_2 n - 1 \geq h \geq \log_6 n - 1
\]
\[
h = \Theta(\log n)
\]
2-3 Tree Insert

- Find the leaf l to insert x as in BST Insert.
- If l has 3 keys, move the middle key of l up to its parent, p, and split l into 2 leaves.
2-3 Tree Insert

- Find the leaf \(l \) to insert \(x \) as in BST Insert.
- if \(l \) has 3 keys, move the middle key of \(l \) up to its parent, \(p \), and split \(l \) into 2 leaves.
- while \(p \) has 3 keys (and 4 children)
 - split \(p \) into \(p_1 \) and \(p_2 \).
 - register \(p_1 \) and \(p_2 \) instead of just \(p \) as children of the parent of \(p \).
 - \(p \leftarrow p.\text{parent} \)
- if the root was split, insert a new root to hold \(p_1 \) and \(p_2 \)
2-3 Insert example
2-3 Insert example

Insert (26)
2-3 Insert example
2-3 Insert example
What is the runtime of 2-3 Insert?
What is the runtime of 2-3 Insert?

\(\Theta(\log n) \)
2-3 Delete

- Find the node T containing x.
- If T 2-leaf, delete x from the leaf.
- Else, replace x by $\text{Successor}(x)$
- This might make a node w have no keys (illegal).
- While w is illegal:
 - If w has a sibling w' with 2 keys, steal one of the keys.
 - If w has a sibling w' with 1 key, merge them.

- if w is the root, delete w, and let $\text{root} \leftarrow w.\text{child}$.
2-3 Delete

- Find the node T containing x.
- If T 2-leaf, delete x from the leaf.
- Else, replace x by $\text{Successor}(x)$
- This might make a node w have no keys (illegal).
- While w is illegal:
 - If w has a sibling w' with 2 keys, steal one of the keys.
 - Let s be the key in the parent u of w and w' separating them.
 move s from u to w, replace s in u by nearest key in w'.
 - If w has a sibling w' with 1 key, merge them.
- If w is the root, delete w, and let $\text{root} \leftarrow w.\text{child}$.
Find the node T containing x.

If T is a 2-leaf, delete x from the leaf.

Else, replace x by $\text{Successor}(x)$

This might make a node w have no keys (illegal).

While w is illegal:

- If w has a sibling w' with 2 keys, steal one of the keys.
 - Let s be the key in the parent u of w and w' separating them.
 - move s from u to w, replace s in u by nearest key in w'.
- If w has a sibling w' with 1 key, merge them.
 - Merge w and w' to a new 3-node w'' with keys s and that of w'.
 - $w \leftarrow \text{parent}(w)$ – may have become illegal.
- If w is the root, delete w, and let $\text{root} \leftarrow w.\text{child}$.
2-3 Delete examples

The left most key has just been deleted.
B-Trees

- **B-trees** are a generalization of 2-3 trees where each node has between B and 2B-1 children.
- Essentially an \((a,b)\)-tree, where \(b = 2a - 1\).
B-Trees

- **B-trees** are a generalization of 2-3 trees where each node has between B and $2B-1$ children.
- Essentially an (a,b)-tree, where $b = 2a-1$.
- Disk based storage. Databases
- If each page can hold $2B$ records, this is an efficient use of disk reads.
Bye

- Next time
 - Heaps
- For Next Class
 - Read 16.1, 16.2, 16.3