Lecture 22: Evaluation

April 24, 2010
Last Time

- Spectral Clustering
Today

• Evaluation Measures
 – Accuracy
 – Significance Testing
 – F-Measure
 – Error Types
 • ROC Curves
 • Equal Error Rate
 – AIC/BIC
How do you know that you have a good classifier?

- Is a feature contributing to overall performance?
- Is classifier A better than classifier B?
- Internal Evaluation:
 - Measure the performance of the classifier.
- External Evaluation:
 - Measure the performance on a downstream task.
Accuracy

• Easily the most common and intuitive measure of classification performance.

\[
\text{Accuracy} = \frac{\# \text{correct}}{N}
\]
Significance testing

• Say I have two classifiers.

• $A = 50\%$ accuracy
• $B = 75\%$ accuracy

• B is better, right?
Significance Testing

• Say I have another two classifiers

• A = 50% accuracy
• B = 50.5% accuracy

• Is B better?
Basic Evaluation

• Training data – used to identify model parameters
• Testing data – used for evaluation
• Optionally: Development / tuning data – used to identify model hyperparameters.

• Difficult to get significance or confidence values
Cross validation

• Identify n “folds” of the available data.
• Train on $n-1$ folds
• Test on the remaining fold.

• In the extreme ($n=N$) this is known as “leave-one-out” cross validation

• n-fold cross validation (xval) gives n samples of the performance of the classifier.
Significance Testing

• Is the performance of two classifiers different with statistical significance?

• Means testing
 – If we have two samples of classifier performance (accuracy), we want to determine if they are drawn from the same distribution (no difference) or two different distributions.
T-test

• One Sample t-test

\[t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}, \]

• Independent t-test
 – Unequal variances and sample sizes

\[t = \frac{\bar{X}_1 - \bar{X}_2}{s_{\bar{X}_1-\bar{X}_2}} \]

\[s_{\bar{X}_1-\bar{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}. \]

Once you have a t-value, look up the significance level on a table, keyed on the t-value and degrees of freedom.
Significance Testing

• Run Cross-validation to get n-samples of the classifier mean.

• Use this distribution to compare against either:
 – A known (published) level of performance
 • one sample t-test
 – Another distribution of performance
 • two sample t-test

• If at all possible, results should include information about the variance of classifier performance.
Significance Testing

• Caveat – including more samples of the classifier performance can artificially inflate the significance measure.
 – If \(x \) and \(s \) are constant (the sample represents the population mean and variance) then raising \(n \) will increase \(t \).
 – If these samples are real, then this is fine. Often cross-validation fold assignment is not truly random. Thus subsequent xval runs only resample the same information.

\[
t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}},
\]
Confidence Bars

• Variance information can be included in plots of classifier performance to ease visualization.

\[\mu = 10 \quad \sigma = 1 \quad n = 10 \]

• Plot standard deviation, standard error or confidence interval?

\[SD = \sigma \quad SE = \frac{\sigma}{\sqrt{n}} \]

\[CI_{95\%} = \mu \pm 1.96 \times \frac{\sigma}{\sqrt{n}} \]
Confidence Bars

• Most important to be clear about what is plotted.
• 95% confidence interval has the clearest interpretation.
Baseline Classifiers

• Majority Class baseline
 – Every data point is classified as the class that is most frequently represented in the training data

• Random baseline
 – Randomly assign one of the classes to each data point.
 • with an even distribution
 • with the training class distribution
Problems with accuracy

• Contingency Table

<table>
<thead>
<tr>
<th>Hyp Values</th>
<th>True Values</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>True Positive</td>
<td>False Positive</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>False Negative</td>
<td>True Negative</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy = \(\frac{TP + TN}{TP + FP + TN + FN} \)
Problems with accuracy

- Information Retrieval Example
 - Find the 10 documents related to a query in a set of 110 documents

<table>
<thead>
<tr>
<th>Hyp Values</th>
<th>True Values</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

Accuracy = 90%
Problems with accuracy

- Precision: how many hypothesized events were true events
- Recall: how many of the true events were identified
- F-Measure: Harmonic mean of precision and recall

\[
P = \frac{TP}{TP + FP}
\]

\[
R = \frac{TP}{TP + FN}
\]

\[
F = \frac{2PR}{P + R}
\]

<table>
<thead>
<tr>
<th>True Values</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyp Values</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
F-Measure

• F-measure can be weighted to favor Precision or Recall
 – beta > 1 favors recall
 – beta < 1 favors precision

F_\beta = \frac{(1 + \beta^2)PR}{(\beta^2 P) + R}

\begin{array}{|c|c|c|}
\hline
\text{Hyp Values} & \text{Positive} & \text{Negative} \\
\hline
\text{Positive} & 0 & 0 \\
\hline
\text{Negative} & 10 & 100 \\
\hline
\end{array}

\begin{align*}
P &= 0 \\
R &= 0 \\
F_1 &= 0
\end{align*}
F-Measure

\[
F_\beta = \frac{(1 + \beta^2)PR}{(\beta^2 P) + R}
\]

\[
P = \frac{1}{1} = 1
\]

\[
R = \frac{1}{10}
\]

\[
F_1 = .18
\]
F-Measure

$$F_\beta = \frac{(1 + \beta^2)PR}{(\beta^2 P) + R}$$

$$P = \frac{10}{60}$$

$$R = 1$$

$$F_1 = .29$$
F-Measure

\[F_\beta = \frac{(1 + \beta^2)PR}{(\beta^2 P) + R} \]

\[\begin{array}{c|cc}
\text{Hyp Values} & \text{Positive} & \text{Negative} \\
\hline
\text{Positive} & 9 & 1 \\
\text{Negative} & 1 & 99 \\
\end{array} \]

\[P = .9 \]

\[R = .9 \]

\[F_1 = .9 \]
F-Measure

• Accuracy is weighted towards majority class performance.

• F-measure is useful for measuring the performance on minority classes.
Types of Errors

• False Positives
 – The system predicted **TRUE** but the value was **FALSE**
 – aka “False Alarms” or Type I error

• False Negatives
 – The system predicted **FALSE** but the value was **TRUE**
 – aka “Misses” or Type II error
ROC curves

• It is common to plot classifier performance at a variety of settings or thresholds

• Receiver Operating Characteristic (ROC) curves plot true positives against false positives.

• The overall performance is calculated by the Area Under the Curve (AUC)
ROC Curves

- Equal Error Rate (EER) is commonly reported.
- EER represents the highest accuracy of the classifier.
- Curves provide more detail about performance.

Gauvain et al. 1995
Goodness of Fit

• Another view of model performance.
• Measure the model likelihood of the unseen data. $l(x; \theta)$
• However, we’ve seen that model likelihood is likely to improve by adding parameters.
• Two information criteria measures include a cost term for the number of parameters in the model
Akaike Information Criterion

• Akaike Information Criterion (AIC) based on entropy

• The best model has the lowest AIC.
 – Greatest model likelihood
 – Fewest free parameters

\[AIC = 2k - 2 \ln(l(x; \theta)) \]

Information in the parameters

Information lost by the modeling
Bayesian Information Criterion

- Another penalization term based on Bayesian arguments
 - Select the model that is *a posteriori* most probably with a constant penalty term for wrong models
 \[BIC = k \ln(n) - 2 \ln(l(x; \theta)) \]
 - If errors are normally distributed.
 \[BIC = \ln(\sigma^2_e) + \frac{k}{n} \ln(n) \]
 - Note compares estimated models when \(x \) is constant
Today

• Accuracy
• Significance Testing
• F-Measure
• AIC/BIC
Next Time

- Regression Evaluation
- Cluster Evaluation