Lecture 18: Gaussian Mixture Models and Expectation Maximization

Machine Learning

April 13, 2010
Last Time

• Review of Supervised Learning
• Clustering
 – K-means
 – Soft K-means
Today

• A brief look at Homework 2
• Gaussian Mixture Models
• Expectation Maximization
The Problem

- You have data that you believe is drawn from n populations
- You want to identify parameters for each population
- You don’t know anything about the populations \(a priori\)
 - Except you believe that they’re gaussian...
Gaussian Mixture Models

- Rather than identifying clusters by “nearest” centroids
- Fit a Set of k Gaussians to the data
- Maximum Likelihood over a mixture model
GMM example

\[f_0(x) = N(x; 2, 2) \quad f_1(x) = N(x; 10, .5) \]

\[\pi = \begin{bmatrix} .5 & .5 \end{bmatrix}^T \]
Mixture Models

• Formally a Mixture Model is the weighted sum of a number of pdfs where the weights are determined by a distribution, \(\pi \)

\[
p(x) = \sum_{i=0}^{k} \pi_i f_i(x)
\]

where \(\sum_{i=0}^{k} \pi_i = 1 \)
Gaussian Mixture Models

- GMM: the weighted sum of a number of Gaussians where the weights are determined by a distribution, π

$$p(x) = \pi_0 N(x | \mu_0, \Sigma_0) + \pi_1 N(x | \mu_1, \Sigma_1) + \ldots + \pi_k N(x | \mu_k, \Sigma_k)$$

where $\sum_{i=0}^{k} \pi_i = 1$
Graphical Models with unobserved variables

• What if you have variables in a Graphical model that are never observed?
 – Latent Variables

• Training latent variable models is an unsupervised learning application
Latent Variable HMMs

- We can cluster sequences using an HMM with unobserved state variables

- We will train latent variable models using Expectation Maximization
Expectation Maximization

• Both the training of GMMs and Graphical Models with latent variables can be accomplished using Expectation Maximization
 – Step 1: Expectation (E-step)
 • Evaluate the “responsibilities” of each cluster with the current parameters
 – Step 2: Maximization (M-step)
 • Re-estimate parameters using the existing “responsibilities”

• Similar to k-means training.
Latent Variable Representation

• We can represent a GMM involving a latent variable

\[p(x) = \sum_{i=0}^{k} \pi_i N(x | \mu_k, \Sigma_k) = \sum_{z} p(z)p(x | z) \]

\[p(z) = \prod_{k=1}^{K} \pi_k^{z_k} \quad p(x | z) = \prod_{k=1}^{K} N(x | \mu_k, \Sigma_k)^{z_k} \]

• What does this give us?

TODO: plate notation
GMM data and Latent variables
One last bit

• We have representations of the joint $p(x,z)$ and the marginal, $p(x)$...

• The conditional of $p(z|x)$ can be derived using Bayes rule.

 – The responsibility that a mixture component takes for explaining an observation x.

\[
\tau(z_k) = p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)} = \frac{\pi_k N(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x|\mu_j, \Sigma_j)}
\]
Maximum Likelihood over a GMM

• As usual: Identify a likelihood function

\[
\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right)
\]

• And set partials to zero...
Maximum Likelihood of a GMM

- Optimization of means.

\[
\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\}
\]

\[
\frac{\partial \ln p(x|\pi, \mu, \Sigma)}{\partial \mu_k} = \sum_{n=1}^{N} \frac{\pi_k N(x_n|\mu_k, \Sigma_k)}{\sum_j \pi_j N(x_n|\mu_j, \Sigma_j)} \Sigma_k^{-1}(x_k - \mu_k) = 0
\]

\[
= \sum_{n=1}^{N} \tau(z_{nk}) \Sigma_k^{-1}(x_k - \mu_k) = 0
\]

\[
\mu_k = \frac{\sum_{n=1}^{N} \tau(z_{nk}) x_n}{\sum_{n=1}^{N} \tau(z_{nk})}
\]
Maximum Likelihood of a GMM

- Optimization of covariance

\[
\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\}
\]

\[
\Sigma_k = \frac{1}{\sum_{n=1}^{N} \tau(z_{nk})} \sum_{n=1}^{N} \tau(z_{nk}) (x_k - \mu_k)(x_k - \mu_k)^T
\]

- Note the similarity to the regular MLE without responsibility terms.
Maximum Likelihood of a GMM

- Optimization of mixing term

$$
\ln p(x|\pi, \mu, \Sigma) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)
$$

$$
0 = \sum_{n=1}^{N} \frac{\pi_k N(x_n|\mu_k, \Sigma_k)}{\sum_{j} \pi_j N(x_n|\mu_j, \Sigma_j)} + \lambda
$$

$$
\pi_k = \frac{\sum_{n=1}^{N} \tau(z_n k)}{N}
$$
MLE of a GMM

\[
\mu_k = \frac{\sum_{n=1}^{N} \tau(z_{nk}) x_n}{N_k}
\]

\[
\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \tau(z_{nk}) (x_k - \mu_k)(x_k - \mu_k)^T
\]

\[
\pi_k = \frac{N_k}{N}
\]

\[
N_k = \sum_{n=1}^{N} \tau(z_{nk})
\]
EM for GMMs

• Initialize the parameters
 – Evaluate the log likelihood

• Expectation-step: Evaluate the responsibilities

• Maximization-step: Re-estimate Parameters
 – Evaluate the log likelihood
 – Check for convergence
EM for GMMs

• E-step: Evaluate the Responsibilities

\[
\tau(z_{nk}) = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x_n | \mu_j, \Sigma_j)}
\]
EM for GMMs

- M-Step: Re-estimate Parameters

\[
\mu_{k}^{new} = \frac{\sum_{n=1}^{N} \tau(z_{nk})x_{n}}{N_{k}}
\]

\[
\Sigma_{k}^{new} = \frac{1}{N_{k}} \sum_{n=1}^{N} \tau(z_{nk})(x_{k} - \mu_{k}^{new})(x_{k} - \mu_{k}^{new})^T
\]

\[
\pi_{k}^{new} = \frac{N_{k}}{N}
\]
Visual example of EM
Potential Problems

• Incorrect number of Mixture Components

• Singularities
Incorrect Number of Gaussians
Incorrect Number of Gaussians
Singularities

• A minority of the data can have a disproportionate effect on the model likelihood.

• For example...
$f_0(x) = N(x; 2, 2)$ \hspace{1cm} $f_1(x) = N(x; 10, .5)$

$\pi = [.5 \hspace{1cm} .5]^T$
Singularities

• When a mixture component collapses on a given point, the mean becomes the point, and the variance goes to zero.

• Consider the likelihood function as the covariance goes to zero.

$$N(x_n|x_n, \sigma^2 I) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_j}$$

• The likelihood approaches infinity.

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k)$$
Relationship to K-means

• K-means makes **hard** decisions.
 – Each data point gets assigned to a single cluster.
• GMM/EM makes **soft** decisions.
 – Each data point can yield a posterior $p(z|x)$
• Soft K-means is a special case of EM.
Soft means as GMM/EM

• Assume equal covariance matrices for every mixture component: \(\epsilon I \)

• Likelihood:
 \[
p(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi \epsilon)^{M/2}} \exp \left\{ -\frac{1}{2\epsilon} \| x - \mu_k \|^2 \right\}
 \]

• Responsibilities:
 \[
 \tau(z_{nk}) = \frac{\pi_k \exp \left\{ -\| x_n - \mu_k \|^2 / 2\epsilon \right\}}{\sum_j \pi_j \exp \left\{ -\| x_n - \mu_j \|^2 / 2\epsilon \right\}}
 \]

• As epsilon approaches zero, the responsibility approaches unity.
Soft K-Means as GMM/EM

- Overall Log likelihood as epsilon approaches zero:
 \[\mathbb{E}_z[\ln p(X, Z|\mu, \Sigma, \pi)] \rightarrow -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| x_n - \mu_k \|^2 + \text{const.} \]

- The expectation of soft k-means is the intercluster variability

- Note: only the means are reestimated in Soft K-means.
 - The covariance matrices are all tied.
General form of EM

• Given a joint distribution over observed and latent variables: \(p(X, Z|\theta) \)
• Want to maximize: \(p(X|\theta) \)

1. Initialize parameters \(\theta^{old} \)
2. E Step: Evaluate:

\[
p(Z|X, \theta^{old})
\]
3. M-Step: Re-estimate parameters (based on expectation of complete-data log likelihood)

\[
\theta^{new} = \arg\max_{\theta} \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)
\]
4. Check for convergence of params or likelihood
Next Time

- Homework 4 due...
- Proof of Expectation Maximization in GMMs
- Generalized EM – Hidden Markov Models