Today

- Last Time
 - Probability Review
- Today
 - Vector Calculus
Let’s talk.

- Linear Algebra
 - Vectors
 - Matrices
 - Basis Spaces
 - Eigenvectors/values?
 - Inversion and transposition

- Calculus
 - Derivation
 - Integration

- Vector Calculus
 - Gradients
 - Derivation w.r.t. a vector
Linear Algebra Basics

- What is a vector?
- What is a matrix?
- Transposition
- Adding matrices and vectors
- Multiplying matrices.
A vector is a one dimensional array.
We denote vectors as either \mathbf{x}, \mathbf{x}.
If we don’t specify otherwise assume \mathbf{x} is a *column vector*.

$$\mathbf{x} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$
A matrix is a higher dimensional array. We typically denote matrices as capital letters e.g., A. If A is an n-by-m matrix, it has the following structure:

$$A = \begin{pmatrix}
 a_{0,0} & a_{0,1} & \cdots & a_{0,m-1} \\
 a_{1,0} & a_{1,1} & \cdots & a_{1,m-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,m-1}
\end{pmatrix}$$
Transposing a matrix or vector swaps rows and columns.

A column-vector becomes a row-vector

\[
x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}
\]

\[
x^T = \begin{pmatrix} x_0 & x_1 & \cdots & x_{n-1} \end{pmatrix}
\]
Transposing a matrix or vector swaps rows and columns.

A column-vector becomes a row-vector

\[
A = \begin{pmatrix}
a_{0,0} & a_{0,1} & \ldots & a_{0,m-1} \\
a_{1,0} & a_{1,1} & \ldots & a_{1,m-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1,0} & a_{n-1,1} & \ldots & a_{n-1,m-1}
\end{pmatrix}
\]

\[
A^T = \begin{pmatrix}
a_{0,0} & a_{1,0} & \ldots & a_{n-1,0} \\
a_{0,1} & a_{1,1} & \ldots & a_{1,m-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{0,m-1} & a_{1,m-1} & \ldots & a_{n-1,m-1}
\end{pmatrix}
\]

If A is n-by-m, then A^T is m-by-n.
Matrices can only be added if they have the same dimension.

\[A + B = \begin{pmatrix}
 a_{0,0} + b_{0,0} & a_{0,1} + b_{0,1} & \cdots & a_{0,m-1} + b_{0,m-1} \\
 a_{1,0} + b_{1,0} & a_{1,1} + b_{1,1} & & a_{1,m-1} + b_{1,m-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n-1,0} + b_{n-1,0} & a_{n-1,1} + b_{n-1,1} & \cdots & a_{n-1,m-1} + b_{n-1,m-1}
\end{pmatrix} \]
To multiply two matrices, the *inner dimensions* must match.

- An n-by-m can be multiplied by an n'-by-m' matrix iff $m = n'$.

$$AB = C$$

$$c_{ij} = \sum_{k=0}^{m} a_{ik} * b_{kj}$$

That is, multiply the i-th row by the j-th column.
Useful matrix operations

- Inversion
- Norm
- Eigenvector decomposition
The inverse of an n-by-m matrix A is denoted A^{-1}, and has the following property.

$$AA^{-1} = I$$

Where I is the **identity matrix**, an n-by-n matrix where $I_{ij} = 1$ iff $i = j$ and 0 otherwise.

If A is a **square** matrix (iff $n = m$) then,

$$A^{-1}A = I$$
The inverse of an n-by-m matrix A is denoted A^{-1}, and has the following property.

$$AA^{-1} = I$$

Where I is the **identity matrix**, an n-by-n matrix where $I_{ij} = 1$ iff $i = j$ and 0 otherwise.

If A is a **square** matrix (iff $n = m$) then,

$$A^{-1}A = I$$

What is the inverse of a vector? $x^{-1} =$?
Some useful Matrix Inversion Properties

\[(A^{-1})^{-1} = A\]

\[(kA)^{-1} = k^{-1}A^{-1}\]

\[(A^T)^{-1} = (A^{-1})^T\]

\[(AB)^{-1} = B^{-1}A^{-1}\]
The norm of a vector \mathbf{x} is written $||\mathbf{x}||$.
The norm represents the euclidean length of a vector.

$$
||\mathbf{x}|| = \sqrt{\sum_{i=0}^{n-1} x_i^2} = \sqrt{x_0^2 + x_1^2 + \ldots + x_{n-1}^2}
$$
A **positive definite** matrix, M has the property that

$$x^T M x > 0$$

A **positive semi-definite** matrix, M has the property that

$$x^T M x \geq 0$$

Why might we care about these matrices?
Eigenvectors

For a square matrix A, the eigenvector is defined as

$$Au_i = \lambda_i u_i$$

Where u_i is an eigenvector and λ_i is its corresponding eigenvalue.

In general, eigenvalues are complex numbers, but if A is symmetric, they are real.

Eigenvalues describe how a matrix transforms a vector, and can be used to define a basis space, namely the eigenspace.

Who cares? The eigenvectors of a covariance matrix have some very interesting properties.
Basis spaces allow vectors to be represented in different spaces. Our normal 2-dimensional basis space is generated by the vectors [0, 1], [1, 0].

- Any 2-d vector can be expressed as the sum of linear factors of these two basis vectors.

However, any two non-colinear vectors can generate a 2-d basis space. In this basis space, the generating vectors are perpendicular.
Basis Spaces
Basis Spaces
Basis Spaces

Why do we care?

Dimensionality reduction.
Calculus Basics

- What is a derivative?
- What is an integral?
A **derivative**, \(\frac{d}{dx} f(x) \) can be thought of as defining the **slope** of a function \(f(x) \). This is sometimes also written as \(f'(x) \).
Derivative Example
Integrals are an inverse operation of the derivative (plus a constant).

\[\int f(x) \, dx = F(x) + c \]

\[F'(x) = f(x) \]

An integral can be thought of as a calculation of the area under the curve defined by \(f(x) \).

A **definite** integral evaluates the area over a finite region. An **indefinite** integral is calculated over the range of \((-\infty, \infty)\).
Useful calculus operations

- Product, quotient, summation rules for derivatives.
- Useful integration and derivative identities.
- Chain rule
- Integration by parts
- Variable substitution (don’t forget the Jacobian!)
Calculus Identities

Summation rule

\[g(x) = f_0(x) + f_0(x) \]
\[g'(x) = f'_0(x) + f'_1(x) \]

Product Rule

\[g(x) = f_0(x)f_1(x) \]
\[g'(x) = f_0(x)f'_1(x) + f'_0(x)f_1(x) \]

Quotient Rule

\[g(x) = \frac{f_0(x)}{f_1(x)} \]
\[g'(x) = \frac{f_0(x)f'_1(x) - f'_0(x)f_1(x)}{f_1^2(x)} \]
Calculus Identities

Constant multipliers

\[g(x) = cf(x) \]
\[g'(x) = cf'(x) \]

Exponent Rule

\[g(x) = f(x)^k \]
\[g'(x) = kf(x)^{k-1} \]

Chain Rule

\[g(x) = f_0(f_1(x)) \]
\[g'(x) = f_0'(f_1(x))f_1'(x) \]
Calculus Identities

Exponent Rule

\[g(x) = e^x \]
\[g'(x) = e^x \]
\[g(x) = k^x \]
\[g'(x) = \ln(k)k^x \]

Logarithm Rule

\[g(x) = \ln(x) \]
\[g'(x) = \frac{1}{x} \]
\[g(x) = \log_b(x) \]
\[g'(x) = \frac{1}{x \ln b} \]
Calculus Operations

Integration by Parts

\[\int f(x) \frac{dg(x)}{dx} \, dx = f(x)g(x) - \int g(x) \frac{df(x)}{dx} \, dx \]

Variable Substitution

\[\int_a^b f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(x) \, dx \]
- Derivation with respect to a vector or matrix.
- Gradient of a vector.
- Change of variables with a vector.
Derivation with respect to a vector

Given a vector $\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T$, and a function $f(\mathbf{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$ how can we find $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$?
Given a vector \(\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T \), and a function \(f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R} \) how can we find \(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \)?

\[
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix}
\frac{\partial f(\mathbf{x})}{\partial x_0} \\
\frac{\partial f(\mathbf{x})}{\partial x_1} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{n-1}}
\end{pmatrix}
\]

This is also called the gradient of the function, and is often written \(\nabla f(\mathbf{x}) \) or \(\nabla f \).
Derivation with respect to a vector

Given a vector \(\mathbf{x} = (x_0, x_1, \ldots, x_{n-1})^T \), and a function \(f(\mathbf{x}) : \mathbb{R}^n \rightarrow \mathbb{R} \) how can we find \(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \)?

\[
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix}
\frac{\partial f(\mathbf{x})}{\partial x_0} \\
\frac{\partial f(\mathbf{x})}{\partial x_1} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{n-1}}
\end{pmatrix}
\]

This is also called the gradient of the function, and is often written \(\nabla f(\mathbf{x}) \) or \(\nabla f \).

Why might this be useful?
Given a vector \mathbf{x} with $|\mathbf{x}| = n$ and a scalar variable y.

\[
\frac{\partial \mathbf{x}}{\partial y} = \begin{pmatrix}
\frac{\partial x_0}{\partial y} \\
\frac{\partial x_1}{\partial y} \\
\vdots \\
\frac{\partial x_{n-1}}{\partial y}
\end{pmatrix}
\]
Useful Vector Calculus identities

Given a vector \mathbf{x} with $|\mathbf{x}| = n$ and a vector \mathbf{y} with $|\mathbf{y}| = m$.

$$
\frac{\partial \mathbf{x}}{\partial \mathbf{y}} = \begin{pmatrix}
\frac{\partial x_0}{\partial y_0} & \frac{\partial x_0}{\partial y_1} & \cdots & \frac{\partial x_0}{\partial y_{m-1}} \\
\frac{\partial x_1}{\partial y_0} & \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_{m-1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{n-1}}{\partial y_0} & \frac{\partial x_{n-1}}{\partial y_1} & \cdots & \frac{\partial x_{n-1}}{\partial y_{m-1}}
\end{pmatrix}
$$
Vector Calculus Identities

Similar to – Scalar Multiplication Rule

$$\frac{\partial}{\partial x} (x^T a) = \frac{\partial}{\partial x} (a^T x) = a$$

Similar to – Product Rule

$$\frac{\partial}{\partial x} (AB) = \frac{\partial A}{\partial x} B + A \frac{\partial B}{\partial x}$$

Derivative of an Matrix inverse.

$$\frac{\partial}{\partial x} (A^{-1}) = -A^{-1} \frac{\partial A}{\partial x} A^{-1}$$

Change of Variable in an Integral

$$\int f(x) dx = \int f(u) \left| \frac{\partial x}{\partial u} \right| du$$
Now we have enough tools to calculate the expectation of a variable given a Gaussian Distribution.

Recall:

$$\mathbb{E}[x|\mu, \sigma^2] = \int p(x|\mu, \sigma^2) xdx$$

$$= \int N(x|\mu, \sigma^2) xdx$$

$$= \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} xdx$$
Calculating the Expectation of a Gaussian

\[E[x|\mu, \sigma^2] = \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \, dx \]

\[u = x - \mu \]
\[du = dx \]

\[E[x|\mu, \sigma^2] = \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} (u + \mu) \, du \]

\[= \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} \, u \, du + \mu \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} \, du \]
Calculating the Expectation of a Gaussian

\[\mathbb{E}[x|\mu, \sigma^2] = \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} u \, du + \mu \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} \, du = 1 \]

\[\mathbb{E}[x|\mu, \sigma^2] = \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} u \, du + \mu \]

Aside: A function is **Odd** iff \(f(x) = -f(-x) \).

Odd functions have the property \(\int_{-\infty}^{\infty} f(x) \, dx = 0 \).

A function is **Even** iff \(f(x) = f(-x) \).

The product of an odd function and an even function is an odd function.
Calculating the Expectation of a Gaussian

\[
\mathbb{E}[x|\mu, \sigma^2] = \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} u \, du + \mu
\]

\[
\exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} \quad \text{is even}
\]

\[
\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} u^2 \right\} u \, du = 0
\]

\[
\mathbb{E}[x|\mu, \sigma^2] = \mu
\]
Why does Machine Learning need these tools?

Calculus

- We need to find maximum likelihoods or minimum risks. This optimization is accomplished with derivatives.
- Integration allows us to marginalize continuous probability density functions.

Linear Algebra

- We will be working in high-dimension spaces.
- Vectors and Matrices allow us to refer to high dimensional points – groups of features – as vectors.
- Matrices allow us to describe the *feature space*.
Why does machine learning need these tools

Vector Calculus

- We need to do all of the calculus operations in high-dimensional feature spaces.
- We will want to optimize multiple values simultaneously – Gradient Descent.
- We will need to take a marginal over a high dimensional distributions – Gaussians.
Broader Context

What we have so far:

- Entities in the world are represented as feature vectors and maybe a label.
- We want to construct statistical models of the feature vectors.
- Finding the most likely model is an optimization problem.
- Since the feature vectors may have more than one dimension, linear algebra can help us work with them.
Next

- Linear Regression