Lecture 5: Linear Regression with Regularization
CSC 84020 - Machine Learning

Andrew Rosenberg

February 19, 2009
Today

- Linear Regression with Regularization
Recap

Linear Regression

Given a target vector \mathbf{t}, and data matrix \mathbf{X}.

Goal: Identify the best parameters for a regression function

$$y = w_0 + \sum_{i=1}^{N} w_i x_i$$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$
This solution is based on

- Maximum Likelihood estimation under an assumption of Gaussian Likelihood
- Empirical Risk Minimization under an assumption of Squared Error

The extension of Basis Functions gives linear regression significant power.
Overfitting occurs when a model captures idiosyncrasies of the input data, rather than generalizing.

- Too many parameters relative to the amount of training data

For example, an order-N polynomial can be exact fit to $N + 1$ data points.
Overfitting Example

\[
\begin{align*}
M = 0 & : \\
M = 1 & :
\end{align*}
\]
Overfitting Example

\[M = 3 \]

\[M = 9 \]
Ways of detecting/avoiding overfitting.

- Use more data
- Evaluate on a parameter tuning set
- **Regularization**
- Take a Bayesian approach
In a Linear Regression model, overfitting is characterized by large parameters.

<table>
<thead>
<tr>
<th></th>
<th>$M = 0$</th>
<th>$M = 1$</th>
<th>$M = 3$</th>
<th>$M = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>0.19</td>
<td>0.82</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>w_1</td>
<td>-1.27</td>
<td>7.99</td>
<td>-25.43</td>
<td>232.37</td>
</tr>
<tr>
<td>w_2</td>
<td>17.37</td>
<td>48568.31</td>
<td>-5321.83</td>
<td></td>
</tr>
<tr>
<td>w_3</td>
<td>-231639.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_4</td>
<td>640042.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_5</td>
<td>-1061800.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_6</td>
<td>1042400.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_7</td>
<td>-557682.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_8</td>
<td>125201.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduce a penalty term for the size of the weights.

Unregularized Regression

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} \left(t_n - y(x_n, w) \right)^2
\]

Regularized Regression

(L2-Regularization or Ridge Regularization)

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \frac{\lambda}{2} \|w\|^2
\]

Note: Large λ leads to higher complexity penalization.
Least Squares Regression with L2-Regularization

$$\nabla_w E(w) = 0$$
Least Squares Regression with L2-Regularization

\[\nabla_w (E(w)) = 0 \]

\[\nabla_w \left(\frac{1}{2} \sum_{i=0}^{N-1} (y(x_i, w) - t_i)^2 + \frac{\lambda}{2} \|w\|^2 \right) = 0 \]

\[\nabla_w \left(\frac{1}{2} \|t - Xw\|^2 + \frac{\lambda}{2} \|w\|^2 \right) = 0 \]
Least Squares Regression with L2-Regularization

\[\nabla_w(E(w)) = 0 \]

\[\nabla_w \left(\frac{1}{2} \sum_{i=0}^{N-1} (y(x_i, w) - t_i)^2 + \frac{\lambda}{2} \| w \|^2 \right) = 0 \]

\[\nabla_w \left(\frac{1}{2} \| t - Xw \|^2 + \frac{\lambda}{2} \| w \|^2 \right) = 0 \]

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]
Least Squares Regression with L2-Regularization

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]
Least Squares Regression with L2-Regularization

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \nabla_w \left(\frac{\lambda}{2} w^T w \right) = 0 \]
Least Squares Regression with L2-Regularization

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \nabla_w \left(\frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \lambda w = 0 \]
Least Squares Regression with L2-Regularization

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \nabla_w \left(\frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \lambda w = 0 \]

\[-X^T t + X^T Xw + \lambda lw = 0 \]
Least Squares Regression with L2-Regularization

\[
\nabla_w \left(\frac{1}{2} (t - Xw)^T(t - Xw) + \frac{\lambda}{2} w^T w \right) = 0
\]

\[
-X^T t + X^T Xw + \nabla_w \left(\frac{\lambda}{2} w^T w \right) = 0
\]

\[
-X^T t + X^T Xw + \lambda w = 0
\]

\[
-X^T t + X^T Xw + \lambda Iw = 0
\]

\[
-X^T t + (X^T X + \lambda I)w = 0
\]
Least Squares Regression with L2-Regularization

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \nabla_w \left(\frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \lambda w = 0 \]

\[-X^T t + X^T Xw + \lambda I w = 0 \]

\[-X^T t + (X^T X + \lambda I)w = 0 \]

\[(X^T X + \lambda I)w = X^T t \]
Least Squares Regression with L2-Regularization

\[\nabla_w \left(\frac{1}{2} (t - Xw)^T (t - Xw) + \frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \nabla_w \left(\frac{\lambda}{2} w^T w \right) = 0 \]

\[-X^T t + X^T Xw + \lambda w = 0 \]

\[-X^T t + X^T Xw + \lambda Iw = 0 \]

\[-X^T t + (X^T X + \lambda I)w = 0 \]

\[(X^T X + \lambda I)w = X^T t \]

\[w = (X^T X + \lambda I)^{-1} X^T t \]
Regularization Results
Regularization Results

![Graph showing regularization results with two curves: Training and Test. The y-axis represents E_{RMS} ranging from 0 to 1, and the x-axis represents $\ln \lambda$ ranging from -35 to -20.](image)
Further Regularization

Regularization Approaches

L2-Regularization

$$E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \frac{\lambda}{2} \|w\|^2$$

L1-Regularization

$$E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda |w|_1$$

L0-Regularization

$$E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda \sum_{n=0}^{N-1} \delta(w_n \neq 0)$$

The **L0-norm** represents the optimal subset of features needed by a Regression model.
Further Regularization

Regularization Approaches

L2-Regularization **Closed form** in polynomial time.

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \frac{\lambda}{2} \|w\|^2
\]

L1-Regularization

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda |w|_1
\]

L0-Regularization

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda \sum_{n=0}^{N-1} \delta(w_n \neq 0)
\]

The **L0-norm** represents the optimal subset of features needed by a Regression model. How can we optimize of these functions?
Further Regularization

Regularization Approaches

L2-Regularization

\[E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \frac{\lambda}{2} \|w\|^2 \]

L1-Regularization Can be **approximated** in poly-time

\[E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda |w|_1 \]

L0-Regularization

\[E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda \sum_{n=0}^{N-1} \delta(w_n \neq 0) \]

The **L0-norm** represents the optimal subset of features needed by a Regression model.

How can we optimize these functions?
Further Regularization

Regularization Approaches

L2-Regularization

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \frac{\lambda}{2} \|w\|^2
\]

L1-Regularization

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda |w|_1
\]

L0-Regularization \textbf{NP complete} optimization

\[
E(w) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \lambda \sum_{n=0}^{N-1} \delta(w_n \neq 0)
\]

The \textbf{L0-norm} represents the optimal subset of features needed by a Regression model.

How can we optimize of these functions?
Curse of Dimensionality

Increasing the dimensionality of the feature space exponentially increases the data needs.

Note: The dimensionality of the feature space = The number of features.

What is the message of this?

- Models should be small relative to the amount of available data.
- Dimensionality Reduction techniques – feature selection – can help.
 - L0-regularization is feature selection for linear models.
 - L1- and L2-regularizations approximate feature selection and regularize the function.
Assume a cell requires 100 data points to generalize properly, and 3-ary multinomial features.

- One dimension – requires 300 data points
- Two Dimensions – requires 900 data points
- Three Dimensions – requires 2,700 data points

In this example, for D-dimensional model fitting, the data requirements are $3^D \times 10$.

Argument against the **Kitchen Sink** approach.
What is a Probability?
What is a Probability?

The **Frequentist** position

- A probability is the likelihood that an event will happen.
- It is approximated as the ratio of the number of times the event happened to the total number of events.
- Assessment is very important to select a model.
- Point Estimates are fine $\frac{n}{N}$
Bayesians v. Frequentists

What is a Probability?

The **Frequentist** position

- A probability is the likelihood that an event will happen.
- It is approximated as the ratio of the number of times the event happened to the total number of events.
- Assessment is very important to select a model.
- Point Estimates are fine $\frac{n}{N}$

The **Bayesian** position

- A probability is the degree of believability that the event will happen.
- Bayesians require that probabilities be conditioned on data, $p(y|x)$.
- The Bayesian approach “is optimal”, given a good model, and good prior and good loss function – don’t worry about assessment as much.
- Bayesians say: if you are ever making a point estimate, you’ve made a mistake. The only valid probabilities are posteriors based on evidence given some prior.
In the previous derivation of the linear regression optimization, we made point estimates for the weight vector, \(\mathbf{w} \).

Bayesians would say – “stop right there”. Use a distribution over \(\mathbf{w} \) to estimate the parameters.

\[
p(\mathbf{w}|\alpha) = N(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp \left\{ -\frac{\alpha}{2} \mathbf{w}^T \mathbf{w} \right\}
\]

\(\alpha \) is a hyperparameter over \(\mathbf{w} \), where \(\alpha \) is the precision or inverse variance of the distribution.

So, optimize

\[
p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)
\]
Bayesian Linear Regression

\[p(w|x, t, \alpha, \beta) \propto p(t|x, w, \beta)p(w|\alpha) \]

Again, optimizing the \textbf{log} likelihood yields a simpler solution.

\[
\ln p(t|x, w, \beta) + \ln p(w|\alpha)
\]

\[p(t|x, w, \beta) = \prod_{n=0}^{N-1} \frac{\beta}{\sqrt{2\pi}} \exp \left\{ -\frac{\beta}{2} (t_n - y(x_n, w))^2 \right\} \]

\[
\ln p(t|x, w, \beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \frac{\beta}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2
\]
Bayesian Linear Regression

\[p(w|x, t, \alpha, \beta) \propto p(t|x, w, \beta)p(w|\alpha) \]

Again, optimizing the log likelihood yields a simpler solution.

\[\ln p(t|x, w, \beta) + \ln p(w|\alpha) \]

\[\ln p(t|x, w, \beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \frac{\beta}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 \]

\[p(w|\alpha) = N(w|0, \alpha^{-1}I) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp \left\{ -\frac{\alpha}{2} w^T w \right\} \]

\[\ln p(w|\alpha) = \frac{M + 1}{2} \ln \alpha - \frac{M + 1}{2} \ln 2\pi - \frac{\alpha}{2} w^T w \]
Bayesian Linear Regression

\[p(w|x, t, \alpha, \beta) \propto p(t|x, w, \beta)p(w|\alpha) \]

Again, optimizing the log likelihood yields a simpler solution.

\[
\ln p(t|x, w, \beta) + \ln p(w|\alpha) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \frac{\beta}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2
\]

\[
\ln p(w|\alpha) = \frac{M + 1}{2} \ln \alpha - \frac{M + 1}{2} \ln 2\pi - \frac{\alpha}{2} w^T w
\]
Bayesian Linear Regression

\[p(w|x, t, \alpha, \beta) \propto p(t|x, w, \beta)p(w|\alpha) \]

Again, optimizing the \textbf{log} likelihood yields a simpler solution.

\[
\ln p(t|x, w, \beta) + \ln p(w|\alpha)
\]

\[
\ln p(t|x, w, \beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \frac{\beta}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2
\]

\[
\ln p(w|\alpha) = \frac{M+1}{2} \ln \alpha - \frac{M+1}{2} \ln 2\pi - \frac{\alpha}{2} w^T w
\]

\[
\ln p(t|x, w, \beta) + \ln p(w|\alpha) = \frac{\beta}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, w))^2 + \frac{\alpha}{2} w^T w
\]
Overfitting is bad.

Bayesians v. Frequentists.

Does it matter which camp you lie in?

Not particularly, but Bayesian approaches allow us some useful interesting and principled tools.
Next

Categorization

- Logistic Regression
- Naive Bayes