
File Input and Output in Python

Matt Huenerfauth

Guest Lecture: October 1, 2010
Methods in Computational Linguistics 1

The City University of New York, Graduate Center

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Reading What the User Types

Reading strings from standard in

Thursday, October 7, 2010

Asking the user for input
• What if your Python program wants the user to

type in his or her name?
• You want it to say:

What is your name?
• Then you want to know what the person typed.

You want to save the result inside of a name
called yourname
yourname = raw_input(“What is your name?”)

Thursday, October 7, 2010

“Standard In” / “Standard Out”
• When you see the window of a running

Python program, think of it as two rivers of
text – flowing in opposite directions.
– Standard Out: This river of text flows out from

the program to the screen. This is all the output
you see displayed on the screen when running.

– Standard In: This river of text flows in from your
keyboard typing to the program as its input.

• Typically, the computer also displays the letters you
are typing on the screen for you to see, too.

Thursday, October 7, 2010

Reading user input from standard in
variable = raw_input(“prompt”)

• This line of python code will do three things:
– raw_input() will first display the word “prompt” to

the screen. (It sends the text flowing out to the
user on the “standard out” river.)

– raw_input() sits and waits for the user to type
something and press ENTER. (It grabs all the
stuff flowing down the “standard in” river until it
notices a ‘\n’ <newline> character.)

– It saves the text into the variable called variable

Thursday, October 7, 2010

raw_input() vs. input()
variable1 = raw_input(“prompt”)

variable2 = input(“prompt”)
• There’s also a method called input() that

you could use to send a prompt and grab the
input that the user types, but it behaves a
little differently than raw_input().
– Normally, raw_input is better to use.

input = eval(raw_input())
– So if the person at the computer inputs a string

like “2+3”, python will see 5 not the string “2+3”.
Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Reading Command Line
Arguments

Thursday, October 7, 2010

Two Ways to Use Python
• GUI development environment: IDLE

– Shell for interactive evaluation.
– Text editor with color-coding and smart indenting for

creating python files.
– Menu commands for changing system settings and

running files.
– If you want to run a

program you’ve saved
as a file, there’s a
menu command.

• Other way: start program
from the command line.

Credits:
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

Thursday, October 7, 2010

In-Class Questions on Oct 1 (1)
• What is the command line? What can you do with one?

– move/copy/delete files, view/make/delete folders, start programs…
– Examples of Commands: cp X Y, mv X Y, ls, mkdir X, cd X, cd ..

• What types of command lines are available?
– Mac: Applications / Utilities / Terminal
– Windows: Start Menu / Run… / cmd
– Similarities and differences on different computers?

• What does "copy a file" look like? What do you type?
– cp filename1.txt filename2.txt
– COMMAND ARGUMENT1 ARGUMENT2

• Why would someone use a command line?
– Instead of using mouse, menus, icons, etc.? Why do programmers

and tech experts like command lines? And novices dislike them?
– Efficient for repetitive tasks, powerful, hard to remember though.

Thursday, October 7, 2010

Running Python from Command Line

• Or in your terminal window, you can type:
python filename.py

– Where “filename.py” is the name of a file you
saved that contains a python program that you
wrote.

– So, you don’t need to use IDLE to run your
programs. You can do it this way; it’s faster.

– People who didn’t install IDLE can still run your
programs on their computer if they have python.

Thursday, October 7, 2010

In-Class Questions on Oct 1 (2)
• Why would it be useful to run a program from a command

line? Why might it be useful for someone to run python
programs from the command line?
– IDLE is something that people use when they are learning to

program or when creating a program (instead of running it).
– Most people don’t have IDLE installed, but do have ‘python’.
– Python programs run A LOT faster when started from the command

line vs. when running in the pretty, colorful IDLE environment.
• Why might it be nice for someone to be able to follow the

same paradigm of COMMAND ARGUMENT1 ARGUMENT2
when using your Python program?
– Imagine a python program you wrote that reads an input file, does

something to it, then writes an output file. You could start your
program and give it the input/output filenames when you run it!

Thursday, October 7, 2010

Reading Input from Command Line
• If you typed additional words after the name

of your Python program, then they are
passed to the program.
– The program can read what you typed on the

command line at startup.
python filename.py dostuff

• You can use this to pass a message to your
program to tell it what to do at start-up.
– How do you do this?

Thursday, October 7, 2010

To get the “arguments” on command line
• Your program must import the “sys” module

if you want it to be able to get the arguments
– Type this somewhere at the top of your program

import sys
• Python will set up a special “list” with the

name sys.argv that contains anything that
you typed after the word python at startup.

sys.argv

Thursday, October 7, 2010

SYS.ARGV[0]
python filename.py dostuff

• Here’s how you use argv (which is a list):
– sys.argv[0] contains a string which is the name

of the file that contains your Python program (it’s
what you typed after the word python).

– sys.argv[0] should contain: filename.py
– (Sometimes it also has the full directory location

of the file. It depends on the operating system.)

Thursday, October 7, 2010

SYS.ARGV[1]
python filename.py dostuff

• Here’s how you use argv (which is a list):
– sys.argv[1] contains a string which is the next

word after the file name.
– sys.argv[1] should contain the string: dostuff
– If you had more words, they are in:

• sys.argv[2]
• sys.argv[3]
• etc.

Thursday, October 7, 2010

In-Class Questions on Oct 1 (3)
• What is "scripting"? Why do experts like this?

– You prepare a sequence of command line commands
ahead of time, save them as a file, and then run them all
at once. This can automate a sequence of actions.

– Why is it necessary to have all of the input to the
program happen on the command line for scripting?

• How can command line arguments allow you to
create a script with a "pipeline" where one program
does something to a file, then the next one does
something to it, then the next one, etc.?
– This makes python programs you write more useful.

Thursday, October 7, 2010

Useful for a Future Homework
• You’ll need to use this in a future homework.

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Reading Data from a File

Thursday, October 7, 2010

What if the text you want is in a file?
• Maybe you want your python program to get

some text from a file that is already saved on
the computer.

• You don’t want the user to have to type in all
of the text again using the raw_input()
method – this would be really inefficient.

• There’s a way for Python to open up files
saved on the computer and read their
contents.

Thursday, October 7, 2010

File Processing with Python
filelink = open("sample.txt")
for line in filelink.readlines():
 print line # do something

• First, you have to “open” the file.
–Python will look for the filename you pass to the

open() method, and if it can file the file, then it will
establish a link to the file and give it the name filelink
(or whatever you want to call it).

–Some people like to use fileptr or just f instead of
filelink. It’s up to you.

Thursday, October 7, 2010

File Processing with Python
filelink = open("sample.txt")
for line in filelink.readlines():
 print line # do something

• Now, you can do stuff with the file. Normally, you want
to read one line of the file at a time.

• To step through the lines of the file, you can use the “for
x in filelink.readlines():” loop. Anything indented below
this line will get repeated for each line of the file.

– x (or whatever you call it) will be a string containing each line
of text in the file, one at a time, as you loop through.

Thursday, October 7, 2010

Read() Method
• To speed things up, we can tell the file object

to read larger chunks of data at a time (more
than one line).
– You could use the read() method to read the

entire file into a single memory block.
filelink = open(Ôfilename.txtÕ)
somestring = filelink.read()
– somestring will contain the entire text of the file!
– You can use somestring.split(‘\n’) to chop it up

into individual lines.

Thursday, October 7, 2010

Readlines() Method
• You can also use the readlines() method.
filelink = open(Ôfilename.txtÕ)
somelist = filelink.readlines()
• Difference between read() and readlines() is

how they return the data.
– read() grabs all the text in the file and returns it

as a single string (maybe with <newline>
characters inside of it).

– readlines() returns a list of strings. Each string in
the list is one of the lines of the file.

Thursday, October 7, 2010

Read() vs. Readlines()
>>> x = filelink.readlines()
>>> x
[‘line 1’, ‘line 2’, ‘line 3’]

 Here, x is a list with
three items in it. Each
item in the list is a string
containing one of the
lines of the file.

>>> x = filelink.read()
>>> x
‘line 1\nline 2\nline 3’

 Here, x is a string
containing the entire
file. It has some
<newline> ‘\n’
characters inside it.

Thursday, October 7, 2010

Looping through file without
saving to a string name

• You can also use the readlines() method to
open up all the text of a file and you can step
through it one line at a time. (Instead of
saving it into a string with a name.)
filelink = open(“filename.txt”)
for line in filelink.readlines():

do something here
print line

Thursday, October 7, 2010

These do the same thing
filelink = open(“filename.txt”)
x = filelink.readlines()
for line in x:

do something here
print line

filelink = open(“filename.txt”)
for line in filelink.readlines():

do something here
print line

This way is better if you
might need to do more
with the file’s text later.
You saved it all in x.

This way is better if you don’t
want to use as much memory.
Don’t remember all the text in x.

Thursday, October 7, 2010

Read(<number>) Method
• If you’re processing really large files, you can

also limit the size of chunk of text you read at
a time to something reasonable.
– For example, if you read a thousand bytes of

data at a time, you probably won’t use up more
than 1 kilobytes or so of memory

filelink = open(‘filename.txt’)
somestring = filelink.read(1000)

– Now, somestring is a string containing all the
lines of the file up to the first 1000 bytes of data
(this is about 500 characters).

Thursday, October 7, 2010

Readlines(<number>) Method
• There’s also a version of readlines() that

works like this, too. Just pass it a number.

filelink = open(‘filename.txt’)
somelist = filelink.readlines(1000)

– Now, somelist contains a list of strings for all the
lines of the file up to the first 1000 bytes of data
(this is about 500 characters).

Thursday, October 7, 2010

Readline() - one line at a time
• You can also read one line at a time from a file

– Grabs all of the text from the file until it hits the first ‘\n’
filelink.readline()

• Note the different methods’ names:
– read() reads the entire file. Returns 1 big string.
– readline() reads one line at a time. Returns 1 string.
– readlines() reads whole file, returns a list of strings.
– read(#) reads the first portion of the file, up to # of bytes of

data. Returns 1 big string.
– readlines(#) reads the first portion of the file, up to # of bytes

of data. Returns a list of strings.

Thursday, October 7, 2010

Closing a File when You’re Done
• When you are finished using a file, it is good

practice to “close” the file.
• This allows other programs to use it.
• The method you use to close a file is:

filelink.close()
• If you want to check if a file is closed, then

you can check the value of this:
filelink.closed

– If it has the value True, then file is closed.

Thursday, October 7, 2010

Trying to use a closed file?
• You’ll get an error if you try to use a file after

you closed it.
>>> filelink.close()
>>> filelink.read()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Writing to Files

Thursday, October 7, 2010

You can also write data into a file
• What if your program has produced some

great results that you want to save?
– You could just have your program “print” the

output to the screen, but then the user would
have to copy/paste to save the results.

– What if it’s a lot of results?
– What if you want another program to read the

results and use it for another step?
– You can save the output of your program into a

file. This works a lot like opening/reading files.

Thursday, October 7, 2010

Writing to a File
• First, you need to “open” up the file.
• There are different ways to do this…

– It might be a new filename that you are creating.
– This might be a file that already exists:

• You can add more data to the end of the file.
(This is called “appending” the end of it.)

• Or you can overwrite the contents of the current file
and replace it with what you are about to write.
(The old contents of the file would be erased.)

Thursday, October 7, 2010

How did we open files before?
• When you opened a file to READ from it:

filelink = open(‘filename.txt’)
• Now, if you want to open a file to write data

into the file, you use this:
– To append data to the end of a current file:

filelink = open(‘filename.txt’, ‘a’)
– To overwrite the contents of a file with new data:

filelink = open(‘filename.txt’, ‘w’)
– For a new filename, you should use the ‘w’ one.

Thursday, October 7, 2010

How to Write Data to a File
• First, make sure you have opened the file.
• Now, two ways you can write data to a file:

 filelink.write(“data”)
or

 print >> filelink, “data”
• If you have already saved the string you

want to write into a name (e.g., x) then you
can pass x to the method instead:

 filelink.write(x)

Thursday, October 7, 2010

Want a <newline> at the end?
• If you want to write more than one line of text

to a file, then you’ll need to write some
<newline> characters as part of your strings.

 filelink.write(“This is one line.\n”)
 filelink.write(“this is another.\n”)
 filelink.write(“one more\n”)
 filelink.write(“forgot it!”)
 filelink.write(“\n”)
 filelink.write(“last one\n”)

Thursday, October 7, 2010

Writing Things that Aren’t Strings
• What if you have some number stored in a

name x and you want to write it to a file?
• First, you need to convert the integer x into a

string. Then, you can write it.
 x = 37
 string_version_of_x = str(x)
 filelink.write(string_version_of_x)

Thursday, October 7, 2010

Convert Anything to a String
• The built-in str() function can convert an

instance of any data type into a string.
– You can define how this function behaves for

user-created data types. You can also redefine
the behavior of this function for many types.

>>> ÒHello Ó + str(2)
ÒHello 2Ó

>>> x = 2
2
>>> ÒHello Ó + str(2)
ÒHello 2Ó

Thursday, October 7, 2010

Note: Opening for Reading Only
• When you want to open a file just for reading

(and not writing), then you don’t need the 2nd
parameter to the open() method:

 filelink = open(“filename.txt”)
• If you really wanted to, you could type this:
 filelink = open(“filename.txt”, ‘r’)
• It has exactly the same meaning.

Thursday, October 7, 2010

Note: Opening for Reading & Writing
• When you want to open a file for both

reading and writing, then you need to use
‘r+’ as the 2nd parameter of the open()
method:

 filelink = open(“filename.txt”, ‘r+’)

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Seeking to a Location in a File

Thursday, October 7, 2010

Python remembers where you are
• When a file is open, Python remembers

where you are in the file.
– So, as you write to the file, it knows where to

write the next letter.
– Or, as you read data from a file, it know where

you left off.
• It keeps track of this using a ‘byte number’.

– Byte = unit of data, eight 1s or 0s.
• You can actually fast-forward and rewind…

Thursday, October 7, 2010

You’re a control freak…
• You want a specific piece of data at a

specific location within a file.
– You know exactly what byte number within the

file the data is located at.
• First open, the file:
 filelink = open(“myfile.txt”)
• Then, use “seek” to skip ahead to that

location – to a specific “byte” number in it.
 filelink.seek(25)

Thursday, October 7, 2010

Details of seek()
• The byte numbers start at 0.

– So, 0 is the beginning of the file.
– And 1 is the 2nd byte of the file, etc.

• You can also control where you are
“seek”ing from – using a 2nd parameter.
– filelink.seek(25, 0) from beginning of file
– filelink.seek(25, 1) from current position
– filelink.seek(-25, 2) from the back of file
– Note: if first number is positive, it fast-forwards. If

it is negative, then it rewinds.
Thursday, October 7, 2010

Example
>>> f = open('/tmp/workfile’, ‘r+’)
>>> f.write('0123456789abcdef')
>>> f.seek(5) # Go to 6th byte in file
>>> f.read(1)
'5’
>>> f.seek(-3, 2) # 3rd byte before end
>>> f.read(1)
'd'

Thursday, October 7, 2010

Where are you in a file?
• Where have you “seeked” to? Or how much

of a file have you read through already?
 filelink.tell()
• This method will return an integer that

indicates the byte number in the file where
you are right now.
– The next thing you try to write will go there.
– Or the next thing you try to read will come from

there.

Last slide on October 1, 2010.

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Converting
Formats of Data

We didn’t get
to this on

October 1.

Thursday, October 7, 2010

Strings can Look Like Numbers
• These are all strings:

a = “Hello”
b = “I’m 6 feet tall.\nHow tall are you?”
c = “23”
d = “3.14”

• So, you couldn’t add c + d together.
– c is just a string with 2 characters in it: 2 3
– d is just a string with 4 characters in it: 3 . 1 4

Thursday, October 7, 2010

Remember str() ?
• We used the method str() to convert stuff

into a string. We had to do this before we
wrote it out to a file.

 filelink = open(‘filename.txt’, ‘w’)
 someint = 23
 filelink.write(str(someint))
 filelink.close()
• str() converts other kinds of data (e.g.,

integers, floats, etc.) into strings.
Thursday, October 7, 2010

Other Kinds of Conversions
• There are also methods for converting things

into integers or into floats.
my_integer_1 = int(“1”)
my_integer_2 = int(“1.5”)
my_float_1 = float(“1”)
my_float_2 = float(“1.4”)

• Above, we converted strings (that happened
to look like the way we write numbers) into
actual Python integers or floats. Why?

Thursday, October 7, 2010

Using Data You Read from Files
• When you read data from files, it is a string.

– Even if it looks like a number, it’s really just a
string of characters that happen to be digits, etc.

– If you want to use it for math computations, you
need to convert it to numbers first.

 f = open(‘workfile.txt’)
 xstring = f.readline()
 xfloat = float(xstring)

Pretend the file looks like this:
3.1415
23
6.45

This is a string: “3.1415”

This is a float: 3.1415

Thursday, October 7, 2010

String to List to String
• Join turns a list of strings into one string.

 <separator_string>.join(<some_list>)

 >>> Ò;Ó.join([ÒabcÓ, ÒdefÓ, ÒghiÓ])
 Òabc;def;ghiÓ

• Split turns one string into a list of strings.
 <some_string>.split(<separator_string>)

 >>> Òabc;def;ghiÓ .split(Ò;Ó)

 [ÒabcÓ, ÒdefÓ, ÒghiÓ]

Note: Non-standard
colors on this slide to
help clarify the string
syntax.

Remember how the read() method grabs entire text of document as one string?
You can use split to separate the lines of the file into individual strings in a list.
>>> x = filelink.read()
>>> list_of_lines_of_file = x.split(“\n”)

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Fancy String Formatting

We didn’t get
to this on

October 1.

Thursday, October 7, 2010

You’re a control freak
• We saw the str() method can convert stuff

into strings.
• What if you want very precise control about

how your numbers are converted into
strings?
– You want to print to the screen or write to a file

so that your data looks a very specific way.
• There is a way to do this…
• It uses the % operator.

Thursday, October 7, 2010

String Formatting Operator: %
• The operator % allows us to build a

string out of many data items in a “fill in
the blanks” fashion.
– Also allows us to control how the final

string output will appear.
– For example, we could force a number to

display with a specific number of digits
after the decimal point.

Thursday, October 7, 2010

Formatting Strings with %
>>> x = “abc”
>>> y = 34
>>> newstring = “%s xyz %d” % (x, y)
>>> newstring
‘abc xyz 34’

• Tuple following the % operator is used to fill in the
blanks in the original string marked with %s or %d.
– %d is a placeholder for an integer, %f for a float, and %s

for a string.
– The Python documentation has more details.

http://docs.python.org/library/stdtypes.html#string-formatting

Thursday, October 7, 2010

http://docs.python.org/library/stdtypes.html%2523string-formatting
http://docs.python.org/library/stdtypes.html%2523string-formatting

You can control the number of digits
>>> import math
>>> somestring = ‘PI is %5.3f.' % math.pi
>>> print somestring
The value of PI is approximately 3.142.
• Look at the extra numbers and period that come

between the % and the f.
– The first number 5 is how many characters minimum to

use to show the entire number.
– The second number 3 is how many digits after the

decimal point.

Thursday, October 7, 2010

Printing with Python
• You can print a string to the screen using “print.”
• Using the % string operator in combination with the

print command, we can format our output text.
>>> print Ò%s xyz %dÓ % (ÒabcÓ, 34)
abc xyz 34

 “Print” automatically adds a newline to the end of the string.
If you include a list of strings, it will concatenate them with
a space between them.
>>> print ÒabcÓ >>> print ÒabcÓ, ÒdefÓ
abc abc def

Thursday, October 7, 2010

Printing Columns of Stuff
• What if you have strings of different lengths

and you want to print them into columns?
– You’d want some extra spaces printed to make

stuff line up correctly.
– There’s a way to do that with the % operator.
>>> print “X %8s X %8s X” % (“Bob”, “Mary”)
X Bob X Mary X
>>> print “X %8s X %8s X” % (“Bo”, “Sarah”)
X Bo X Sarah X

Thursday, October 7, 2010

Another Way: Right Justification
>>> for x in range(1, 5):
 print str(x).rjust(2), str(x*x).rjust(3),
 # Note trailing comma on previous line
 print str(x*x*x).rjust(4)

 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125

Ending the line of a
print statement with
a comma prevents
a <newline> from
being added to the
end of the line.

The rjust() string
operation adds
some extra
spaces to the
front of the string
to make it a
certain length.

Thursday, October 7, 2010

String Operations
• We can use some methods built-in to the string

data type to perform some formatting operations on
strings:

>>> ÒhelloÓ .upper()
ÔHELLOÕ

• There are many other handy string operations
available. Check the Python documentation for
more.

Thursday, October 7, 2010

If extra time…
• http://docs.python.org/tutorial/inputoutput.html
• http://docs.python.org/library/stdtypes.html#string-formatting

Thursday, October 7, 2010

http://docs.python.org/tutorial/inputoutput.html
http://docs.python.org/tutorial/inputoutput.html
http://docs.python.org/library/stdtypes.html%2523string-formatting
http://docs.python.org/library/stdtypes.html%2523string-formatting

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

Files Used During Class
• These four files were used in demonstrations

in class:
sample.py
arguments.py
fileopening.py
inputfile.txt

• The text of these files is included in the
following slides. You can copy/paste the text
of these slides into a a text editor to make
your own copies of these files.

Thursday, October 7, 2010

sample.py
var = raw_input("type:")
print "You just typed: "
print var

Thursday, October 7, 2010

arguments.py
import sys

var = raw_input("type:")
print "You just typed: "
print var

var2 = sys.argv[0]
print "My name is ", var2

var3 = sys.argv[1]
print "You also typed: ", var3

Thursday, October 7, 2010

fileopening.py
print "This program will try to open"
print "the file inputfile.txt and print it."

filelink = open("inputfile.txt")

for line in filelink.readlines():
 print line

filelink.close()

Thursday, October 7, 2010

inputfile.txt
This is an input file.
This is the second line of the file.
This is the third line of the file.

Thursday, October 7, 2010

Outline

• Reading What the User Types
• Reading Command Line Arguments
• Reading Data from a File
• Writing to Files
• Seeking to a Location in a File
• Converting Formats of Data
• Fancy String Formatting
• Files Used for In-Class Demonstrations

Thursday, October 7, 2010

