Lecture 19: Hidden Markov Models
CSCI 780 - Machine Learning

Andrew Rosenberg
Last Time

- Clustering
Today

- Hidden Markov Models
Imagine a game of dice.

- When the croupier rolls 4, 5, 6 you win.
- When the croupier rolls 1, 2, 3 you lose.

Model the likelihood of winning.

- IID multinomials
Now imagine that the croupier cheats.

There are three dice.

- One fair (fair)
- One good for the house (bad)
- One good for you (good)
Model the Likelihood of winning.

- IID multinomials
- Latent variable

\[q_i \]

\[i \in \{0..n - 1\} \]

\[x_i \]
Model the Likelihood of winning.

- IID multinomials
- Latent variable θ
- Allow a prior over die choices

\[i \in \{0..n - 1\} \]
The Moody Croupier

- Now what if the dealer is moody?
- The dealer doesn’t like to change the die that often
- The dealer doesn’t like to switch from the **good** die to the **bad** die.
- No longer iid! θ
- The die he uses at time t is dependent on the die used at $t - 1$

\[
q_0, q_1, q_2, \ldots, q_{T-1}
\]

\[
x_0, x_1, x_2, x_{T-1}
\]

![Bar charts for good, fair, and bad dice](attachment:image.png)
Temporal or sequence model.

Markov Assumption

- future \(\perp \perp \) past | present
- \(p(q_t|q_{t-1}, q_{t-2}, q_{t-3}, \ldots, q_0) = p(q_t|q_{t-1}) \)

Get the overall likelihood from the graphical model.

\[
p(x) = p(q_0) \prod_{t=1}^{T-1} p(q_t|q_{t-1}) \prod_{t=0}^{T-1} p(x_t|q_t)
\]
Sequential Modeling

- future ⊥ past|present
- \(p(q_t|q_{t-1}, q_{t-2}, q_{t-3}, \ldots, q_0) = p(q_t|q_{t-1}) \)

Get the overall likelihood from the graphical model.

\[
p(x) = p(q_0) \prod_{t=1}^{T-1} p(q_t|q_{t-1}) \prod_{t=0}^{T-1} p(x_t|q_t)
\]

- \(p(q_t|q_{t-1})? \)

![Graphs showing the probability distribution for good, fair, and bad outcomes.](image)
HMMs have two variables: \textit{state} \(q \) and \textit{emission} \(y \)

In general the \textit{state} is an unobserved latent variable.

Can consider HMMs as stochastic automata – weighted finite state machines.
HMMs have two variables: **state** \(q \) and **emission** \(y \)

- In general the **state** is an unobserved latent variable.
- No observation of \(q \) directly. Only a related emission distribution. “doubly-stochastic automaton”.
HMM Applications

- **Speech Recognition** (Rabiner): phonemes from audio cepstral vectors
- **Language** (Jelinek): part of speech tag from words
- **Biology** (Baldi): splice site from gene sequence
- **Gesture** (Starner): word from hand coordinates
- **Emotion** (Picard): emotion from EEG
Types of Variables

- **Continuous States**
 - E.g. Kalman filters
 - \(p(q_t|q_{t-1}) = N(q_t|Aq_{t-1}, Q) \)

- **Discrete States**
 - E.g., Finite state machine
 - \(p(q_t|q_{t-1}) = \prod_{i=0}^{M-1} \prod_{j=0}^{M-1} [\alpha_{ij}] q_{t-1}^i q_t^j \)

- **Continuous Observations**
 - E.g. time series data
 - \(p(x_t|q_t) = N(x_t|\mu_{q_t}, \Sigma_{q_t}) \)

- **Discrete Observations**
 - E.g. strings
 - \(p(x_t|q_t) = \prod_{i=0}^{M-1} \prod_{j=0}^{N-1} [\eta_{ij}] q_{t}^i y_t^j \)
HMM Parameters

M states and N-class observations
Complete likelihood from Graphical Model

\[
p(x) = p(q_0) \prod_{t=1}^{T-1} p(q_t|q_{t-1}) \prod_{t=0}^{T-1} p(x_t|q_t)
\]

Marginalize over unobserved hidden states

\[
p(y) = \sum_{q_0} \cdots \sum_{q_{T-1}} p(q, y)
\]

CPTs are reused: $\theta = \{\pi, \eta, \alpha\}$

\[
p(q_t|q_{t-1}) = \prod_{i=0}^{M-1} \prod_{j=0}^{M-1} [\alpha_{ij}]^{q_{t-1}^j y_t^j}
\]

\[
\sum_{j=0}^{M-1} \alpha_{ij} = 1
\]

\[
p(x_t|q_t) = \prod_{i=0}^{M-1} \prod_{j=0}^{N-1} [\eta_{ij}]^{q_t^i y_t^j}
\]

\[
\sum_{j=0}^{N-1} \eta_{ij} = 1
\]

\[
p(q_0) = \prod_{i=0}^{M-1} [\pi_i]^{q_0^i}
\]

\[
\sum_{j=0}^{M-1} \pi_i = 1
\]
HMM Operations

- **Evaluate**
 - Evaluate the likelihood of a model given data.

- **Decode**
 - Identify the most likely sequence of states

- **Max Likelihood**
 - Estimate the parameters.
Junction Tree
Initialization

\[\psi(q_0, x_0) = p(q_0)p(x_0, q_0) \]
\[\psi(q_t, q_{t+1}) = p(q_{t+1}|q_t) = A_{q_t,q_{t+1}} \]
\[\psi(q_t, x_t) = p(x_t|q_t) \]
\[Z = 1 \]
\[\phi(q_t) = 1 \]
\[\zeta(q_t) = 1 \]
Collect up from leaves – don’t change zeta separators.

\[\zeta^*(q_t) = \sum_{y_t} \psi(q_t, x_t) = \sum_{y_t} p(x_t | q_t) = 1 \]

\[\psi^*(q_{t-1}, q_t) = \frac{\zeta^*(q_t)}{\zeta(q_t)} \psi(q_{t-1}, q_t) = \psi(q_{t-1}, q_t) \]
JTA on HMMs

Update

Collect left-right over phi – state sequence becomes marginals.

\[
\phi^*(q_0) = \sum_{x_0} \psi(q_0, x_0) = p(q_0)
\]

\[
\phi^*(q_t) = \sum_{q_{t-1}} \psi(q_t, q_{t-1}) = p(q_t)
\]

\[
\psi^*(q_0, q_1) = \frac{\phi^*(q_0)}{\phi(q_0)} \psi(q_0, q_1) = p(q_0, q_1)
\]
Distribute to separators

\[\zeta^{**}(q_t) = \sum_{q_{t-1}} \psi^*(q_{t-1}, q_t) = \sum_{q_{t-1}} p(q_{t-1}, q_t) = p(q_t) \]

\[\psi^{**}(q_t, x_t) = \frac{\zeta^{**}(q_t)}{\zeta^*(q_t)} \psi(q_t, x_t) = \frac{p(q_t)}{p(x_t|q_t)} p(x_t, q_t) = p(x_t, q_t) \]
Introduction of Evidence

\[p(q|\bar{x}) = p(q_0) \prod_{t=0}^{T-1} p(q_t|q_{t-1}) \prod_{t=0}^{T-1} p(\bar{x}_t|q_t) \]

- Observe a sequence of data.
- Potentials become slices

\[
\begin{align*}
\psi(q_t, \bar{x}_t) &= p(\bar{x}_t|q_t) \\
\zeta^*(q_t) &= \psi(q_t, \bar{x}_t) = p(\bar{x}_t|q_t) \\
\zeta^*(q_t) &\neq \sum_{x_t} \psi(q_t, \bar{x}_t)
\end{align*}
\]

- Collect zeta separators bottom up
 - \(\zeta^*(q_t) = \psi(q_t, \bar{x}_t) = p(\bar{x}_t|q_t) \)
- Collect phi separators to the right
 - \(\phi^*(q_0) = \sum_{x_0} \psi(q_0, \bar{x}_0) \delta(x_0 - \bar{x}_0) = p(q_0, \bar{x}_0) \)
Collecting up and to the left, updating potentials by left and bottom separators

\[\psi^*(q_t, q_{t+1}) = \frac{\phi^*(q_t)}{1} \frac{\zeta^*(q_{t+1})}{1} \psi(q_t, q_{t+1}) = \phi^*(q_t) p(\bar{x}_{t+1}|q_{t+1}) \alpha_{q_t q_{t+1}} \]

\[\phi^*(q_{t+1}) = \sum_{q_t} \psi^*(q_t, q_{t+1}) = \sum_{q_t} \phi^*(q_t) p(\bar{x}_{t+1}|q_{t+1}) \alpha_{q_t q_{t+1}} \]

Note:

\[\phi^*(q_0) = p(\bar{x}_0, q_0) \]

\[\phi^*(q_1) = \sum_{q_0} p(\bar{x}_0, q_0) p(\bar{x}_1|q_1) p(q_1|q_0) = p(\bar{x}_0, \bar{x}_1, q_1) \]

\[\phi^*(q_2) = \sum_{q_1} p(\bar{x}_0, \bar{x}_1, q_0) p(\bar{x}_2|q_2) p(q_2|q_1) = p(\bar{x}_0, \bar{x}_1, \bar{x}_2, q_2) \]

\[\phi^*(q_{t+1}) = \sum_{q_t} p(\bar{x}_0, \ldots, \bar{x}_{t+1}, q_{t+1}) p(\bar{x}_{t+1}|q_{t+1}) p(q_{t+1}|q_t) = p(\bar{x}_0, \ldots, \bar{x}_{t+1}, q_{t+1}) \]
- Compute the likelihood of the sequence.
- Collection is sufficient.

From previous slide

\[\phi^*(q_{t+1}) = \sum_{q_t} p(\bar{x}_0, \ldots, \bar{x}_t, q_t)p(x_{t+1}, q_{t+1})p(q_{t+1}|q_t) = p(\bar{x}_0, \ldots, x_{t+1}, q_{t+1}) \]

So the rightmost node gives:

\[\phi^*(q_{T-1}) = p(\bar{x}_0, \ldots, x_{T-1}, q_{T-1}) \]

The likelihood just requires marginalization over \(q_{T-1} \).

\[p(\bar{x}_0, \ldots, x_{T-1}) = \sum_{q_{T-1}} p(\bar{x}_0, \ldots, x_{T-1}, q_{T-1}) = \sum_{q_{T-1}} \phi^*(q_{T-1}) \]
But the potentials cannot be read as marginals without the Distribute step of the JTA.

- Last state of collection

\[
\psi^*(q_{T-2}, q_{T-1}) = \frac{\phi^*(q_{T-2}) \cdot \zeta^*(q_{T-1})}{1} \psi(q_{T-2}, q_{T-1}) = \frac{\phi^*(q_{T-2}) p(\bar{x}_{T-1} | q_{T-1})}{1} \alpha_{q_{T-2}q_{T-1}}
\]

- Distribute ** along the state nodes to the left.
- Distribute ** down from state nodes to observation nodes.

Update parameters.

\[
\psi^{**}(q_{T-2}, q_{T-1}) = \psi^*(q_{T-2}, q_{T-1}) \\
\phi^{**}(q_t) = \sum_{q_{t+1}} \psi^{**}(q_t, q_{t+1}) \\
\zeta^{**}(q_{t+1}) = \sum_{q_{t}} \psi^{**}(q_t, q_{t+1}) \\
\psi^{**}(q_t, q_{t+1}) = \frac{\phi^{**}(q_{t+1})}{\phi^*(q_{t+1})} \psi^*(q_t, q_{t+1})
\]
Decoding

- **Decode**: Given x_0, \ldots, x_{T-1} identify the most likely q_0, \ldots, q_{T-1}.
- Now that JTA is finished we have marginals in the potentials and separators

\[
\phi^{**}(q_t) \propto p(q_t | \bar{x}_0, \ldots, \bar{x}_{T-1}) \\
\zeta^{**}(q_{t+1}) \propto p(q_{t+1} | \bar{x}_0, \ldots, \bar{x}_{T-1}) \\
\psi^{**}(q_t, q_{t+1}) \propto p(q_t, q_{t+1} | \bar{x}_0, \ldots, \bar{x}_{T-1})
\]

- Need to find the most likely path from q_0 to q_{T-1}
- **Argmax JTA**.
 - Run JTA but rather than sums in the update rule, use the max operator.
 - Then find the largest entry in the separators

\[
\hat{q}_t = \arg\max_{q_t} \phi^{**}(q_t)
\]
- Finding an optimal state sequence can be intractable.
- There are M^T possible paths, for M states and T time steps.
 - T can easily be on the order of 1000 in speech recognition.

- Construct a Lattice of state transitions
- Only continue to explore paths with likelihood greater than some threshold, or only continue to explore the top N-paths
- Also extended as **beam search**

Algorithm:
- Initialize paths at every state.
- For each transition follow only the most likely edge.

or

- Initialize paths at every state.
- For each transition follow only those paths that have a likelihood over some threshold.
Viterbi decoding
Maximum Likelihood

Training parameters with observed states.

- Maximum likelihood (as ever).

\[l(\theta) = \log(p(q, \bar{x})) \]

\[= \log \left(p(q_0) \prod_{t=1}^{T-1} p(q_t|q_{t-1}) \prod_{t=0}^{T-1} p(\bar{x}_i|q_i) \right) \]

\[= \log p(q_0) + \sum_{t=1}^{T-1} \log p(q_t|q_{t-1}) + \sum_{t=0}^{T-1} \log p(\bar{x}_i|q_i) \]

\[= \log \prod_{i=0}^{M-1} [\pi_i]^{q_i^0} + \sum_{t=1}^{T-1} \log \prod_{i=0}^{M-1} \prod_{j=0}^{M-1} [\alpha_{ij}]^{q_{t-1}^i q_t^j} + \sum_{t=0}^{T-1} \log \prod_{i=0}^{M-1} \prod_{j=0}^{N-1} [\eta_{ij}]^{q_t^i \bar{x}_t^j} \]

\[= \sum_{i=0}^{M-1} q_i^0 \log \pi_i + \sum_{t=1}^{T-1} \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} q_{t-1}^i q_t^j \log \alpha_{ij} + \sum_{t=0}^{T-1} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} q_t^i \bar{x}_t^j \log \eta_{ij} \]

- Introduce Lagrange multipliers, take partials, set to zero.
Maximum Likelihood

Training parameters with observed states.

- Maximum likelihood – as ever.

\[
I(\theta) = \sum_{i=0}^{M-1} q_i^0 \log \pi_i + \sum_{t=1}^{T-1} \sum_{i=0}^{M-1} q_{t-1}^i q_t^i \log \alpha_{ij} + \sum_{t=0}^{T-1} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} q_t^i \bar{x}_t^i \log \eta_{ij}
\]

- Introduce Lagrange multipliers, take partials, set to zero.

\[
\hat{\pi}_i = q_i^0 \\
\hat{\alpha}_{ij} = \frac{\sum_{t=0}^{T-2} q_t^i q_{t+1}^j}{\sum_{k=1}^{M-1} \sum_{t=0}^{T-2} q_t^i q_{t+1}^k} \\
\hat{\eta}_{ij} = \frac{\sum_{t=0}^{T-1} q_t^i \bar{x}_t^j}{\sum_{k=1}^{M-1} \sum_{t=0}^{T-1} q_t^i \bar{x}_t^k}
\]
However, we may not have observed state sequences.

The Moody Croupier

Need to do unsupervised learning (clustering) on the states.

Maximize the Expected likelihood given a guess for $p(q)$

Expectation Maximization – Covered when we move to unsupervised techniques
Next

- Perceptron and Neural Networks