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Abstract

We address the problem of localizing homology classes, namely, finding the cycle

representing a given class with the most concise geometric measure. We study the

problem with different measures: volume, diameter and radius.

For volume, that is, the 1-norm of a cycle, two main results are presented. First,

we prove the problem is NP-hard to approximate within any constant factor. Second,

we prove that for homology of dimension two or higher, the problem is NP-hard to

approximate even when the Betti number is O(1). The latter result leads to the in-

approximability of the problem of computing the nonbounding cycle with the smallest

volume, and computing cycles representing a homology basis with the minimal total

volume.

As for the other two measures defined by pairwise geodesic distance, diameter

and radius, we show that the localization problem is NP-hard for diameter, but is

polynomial for radius.

Our work is restricted to homology over the Z2 field. Results over other fields have

been studied recently by Dey et al. [13].

∗Partially supported by the Austrian Science Fund under grant P20134-N13

1



1 Introduction

The problem of computing the topological features of a space has recently drawn much at-

tention from researchers in various fields, such as high-dimensional data analysis [5], graphics

[17], networks [12] and computational biology [11]. Topological features are often preferable

to purely geometric features, as they are more qualitative and global, and tend to be more

robust. If the goal is to characterize a space, therefore, features which incorporate topology

seem to be good candidates.

While topological features are global, the need to “localize” them has been raised in a

variety of applications. In graphics and manifold learning, one wants to detect and remove

topological noise such as the small holes and handles that are introduced in data acquisition;

this is often done in the context of traditional signal-noise analysis, and finite sampling

of continuous spaces [21, 29, 25]. In the area of sensor networks, holes of the coverage

region, caused by physical constraints, should be accurately identified and described so as

to produce as robust a network as possible [20, 26]. In the study of shape, 3D shapes may be

enriched with properties such as curvatures associated with tangent vectors at each tangent

plane. The new augmented shape lives in high dimension, whose topological features can

be localized and reveal geometric features of the original shape [4].

In this paper, we will address the localization problem, namely, finding the smallest

representative cycle of a homology class with regard to a given natural criterion of the size

of a cycle. The criterion should be deliberately chosen so that the corresponding smallest

cycle is concise in not only mathematics but also intuition. Such a cycle is a “well-localized”

representative cycle of its class. See Figure 1 for examples. In a disk with three holes (Figure

1(a)), cycles z1 and z2 are well-localized; z3 is not. In a 2-handled torus (Figure 1(b)), the

concise cycle z1 is a better representative (than z2) of its class, and describes the small

handle better.

In Section 4.1, we use volume, the number of simplices of a cycle, as the criterion to min-

imize. For a 1-dimensional (resp. 2-dimensional) cycle, the volume is its length (resp. area).

We have two main results. First, we prove that localizing a given class with the min-
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(a) (b)

Figure 1: Motivating examples for localization.

imal volume cycle is NP-hard to approximate within any constant factor. The proof is a

strict reduction from the nearest codeword problem [2]. We prove the inapproximability for

homology of any dimension.

Second, we prove that for homology of dimension two or higher, computing the non-

bounding cycle with the smallest volume is NP-hard to approximate within any constant

factor. This is true even when the Betti number is fixed. This result leads to the inapprox-

imability of two other problems concerning homology of dimension two or higher, namely,

• localizing a given class with the minimal volume cycle, when Betti number is fixed,

and

• computing a homology cycle basis with the minimal total volume.

We conclude the paper with a discussion of other minimization criteria, including di-

ameter and radius (Section 5). In specific, we show that localization with diameter cost

function is NP-hard, where as with radius is polynomial.

Throughout this paper, the topological features we use are homology classes over Z2

field. (Thus, all the additions are mod 2 additions.)
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2 Preliminaries

2.1 Homology Groups.

We briefly describe some background knowledge from algebraic topology. Refer to [24]

for more details. We restrict our discussion to the combinatorial framework of simplicial

homology over Z2 field.

Given a simplicial complex K, a d-chain is a formal sum of d-simplices, c =
∑
σ∈K aσσ,

aσ ∈ Z2. All the d-chains form the group of d-chains, Cd(K). The boundary of a d-chain

is the sum of the (d − 1)-faces of all the d-simplices in the chain. The boundary operator

∂d : Cd(K)→ Cd−1(K) is a group homomorphism.

A d-cycle is a d-chain without boundary. 1 The set of d-cycles forms a subgroup of

the chain group, which is the kernel of the boundary operator, Zd(K) = ker(∂d). A d-

boundary is the boundary of a (d+ 1)-chain. The set of d-boundaries forms a group, which

is the image of the boundary operator, Bd(K) = img(∂d+1). It is not hard to see that a

d-boundary is also a d-cycle. Therefore, Bd(K) is a subgroup of Zd(K). A d-cycle which is

not a d-boundary, z ∈ Zd(K)\Bd(K), is a nonbounding cycle. In our case, the coefficients

belong to a field, namely Z2; when this is the case, the groups of chains, boundaries and

cycles are all vector spaces. Note that this is not true when the homology is over a ring

which is not a field, such as Z.

The d-dimensional homology group is defined as the quotient group Hd(K) = Zd(K)/Bd(K).

An element in Hd(K) is a homology class, which is a coset of Bd(K), [z] = z + Bd(K) for

some d-cycle z ∈ Zd(K). If z is a d-boundary, [z] = Bd(K) is the identity element of Hd(K).

Otherwise, when z is a nonbounding cycle, [z] is a nontrivial homology class and z is called a

representative cycle of [z]. Cycles in the same homology class are homologous to each other,

which means their difference is a boundary.
1For those unfamiliar with homology, we emphasize that a 1-cycle is different from the cycle defined in

graph theory. For the former definition, a 1-cycle can be a disjoint union of arbitrarily many 1-cycles. But
this is not true for the latter definition.
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The dimension of the homology group, which is referred to as the Betti number,

βd = dim(Hd(K)) = dim(Zd(K))− dim(Bd(K)).

As the dimension of the chain group is upperbounded by the cardinality of K, n, so are

the dimensions of Bd(K), Zd(K) and Hd(K). The Betti number can be computed with a

reduction algorithm based on row and column operations of the boundary matrices [24].

Various reduction algorithms have been devised for different purposes.

A homology basis is a set of βd classes generating the group Hd(K). We call a set of βd

nonbounding cycles representing a homology basis a homology cycle basis. Any d-cycle can

be written as the linear combination of a homology cycle basis and boundaries. Given a

homology cycle basis, {z1, z2, · · · , zβd}, any homology class can be written as
∑βd
i=1 ai[zi].

Its cycles can be written as [z1, · · · , zβd ]α+ ∂d+1γ, where α =

[ a1

...
aβd

]
.

Note that since the field is Z2, the set of d-chains is in one-to-one correspondence with the

set of subsets of the set of d-simplices. A d-chain corresponds to a nd-dimensional vector,

whose nonzero entries correspond to the included d-simplices. Here nd is the number of

d-simplices in K. Computing the boundary of a d-chain corresponds to multiplying the

chain vector with a boundary matrix [b1, ..., bnd ], whose column vectors are boundaries of

d-simplices in K. By slightly abusing notation, we call the boundary matrix ∂d.

We call a subset of simplices of a given simplicial complex a subcomplex, if this subset

itself is a simplicial complex. We denote the d-skeleton of K as the subcomplex consisting

of all the d-simplices and their faces. The following notation will prove convenient. We say

that a d-chain c ∈ Cd(K) is carried by a subcomplex K0 when all the d-simplices of c belong

to K0. We denote vert(K) as the set of vertices of the simplicial complex K, vert(c) as that

of the chain c. Denote |K| as the underlying space of K, |c| as that of the chain c.

Replacing simplices by their continuous images in a given topological space gives singular

homology. The simplicial homology of a simplicial complex is naturally isomorphic to the

singular homology of its geometric realization. This implies, in particular, that the simplicial

homology of a space does not depend on the particular simplicial complex chosen for the
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space. In figures of this paper, we often ignore the simplicial complex and only show the

continuous images of chains.

The Discrete Geodesic Distance. To introduce the diameter and radius functions, we

need a notion of distance. As we will deal with a simplicial complex K, it is most natural

to introduce a discrete metric, and corresponding distance functions. We define the discrete

geodesic distance from a vertex p ∈ vert(K), fp : vert(K)→ R, as follows. Suppose each edge

in K has a nonnegative weight, for any vertex q ∈ vert(K), fp(q) = dist(p, q) is the length

of the shortest path connecting p and q, in the 1-skeleton of K. We may then extend this

distance function from vertices to higher dimensional simplices naturally. For any simplex

σ ∈ K, fp(σ) is the maximal function value of the vertices of σ, fp(σ) = maxq∈vert(σ) fp(q).

This extension has the same effect as linearly interpolating the function on the interiors of

the simplices (the sublevel sets of the two extensions are homotopy equivalent). Finally, we

define a geodesic ball Brp, p ∈ vert(K), r ≥ 0, as the subset of K, Brp = {σ ∈ K | fp(σ) ≤ r}.

It is straightforward to show that these subsets are in fact subcomplexes.

2.2 Terminology from Coding Theory.

We focus on binary linear codes and thus only use matrices over the Z2 field. For consistency,

we switch the roles of the row and column indices from the standard definition. Refer to

[23] for details.

Given an m×k (m > k) full rank matrix A, we define a linear code as the k-dimensional

column space of A, namely, span(A). Each element of the linear code is called a codeword.

This matrix is called the generator matrix as it is a basis of the linear code. By slightly

abusing notation, we call a full rank matrix A⊥ the parity-check matrix if its nullspace is

the linear code generated by A.

Given a generator matrix A, A⊥ may be computed in polynomial time. Its dimension is

(m−k)×m. In specific, A⊥A = 0, and thus AT (A⊥)T = 0. Any basis of the solution space

of the linear equation system ATx = 0 would form a valid A⊥. This could be computed by

a Gauss-Jordan elimination. For example, the generator matrix and its parity-check matrix
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could be

A =



1 1 0

0 1 0

1 0 1

1 1 0

1 0 0


, A⊥ =



1 1

0 1

0 0

1 0

0 1


2.3 The Hardness of Approximability and Strict Reductions.

We will prove several optimization problems are NP-hard to approximate within any con-

stant factor. Relevant definitions will be presented in this section. See [3] for more details.

For ease of exposition, we only discuss minimization problems. The definitions can be

extended to maximization problems easily.

An NP optimization problem Π is a three-tuple (I,Sol,m) in which I is the set of

instances. For each instance I ∈ I, Sol(I) denotes the set of feasible solutions of I, and the

cost function, m(I, S), produces a value for each feasible solution S ∈ Sol(I). Any instance

can be recognized in time polynomial in its size, card(I). It is also polynomial to verify

whether any given S is a feasible solution, or evaluate the cost function m.

For an instance I and one of its feasible solutions, S ∈ Sol(I), we define the performance

ratio, ρΠ(I, S), as the ratio of the value m(I, S) (assume m(·, ·) ≥ 0) over the value of the

optimal solution, formally,

ρΠ(I, S) =
m(I, S)

m(I, S∗(I))

where S∗(I) is the optimal solution of I. The quality of a polynomial approximation algo-

rithm, A, is measured by the approximation ratio ρA(I) = ρΠ(I, A(I)). For minimization

problems, therefore, the approximation ratio is in [1,∞).

An NP optimization problem Π belongs to the class APX if there exists a polynomial

approximation algorithm A and a value r ∈ Q such that given any instance I of Π, ρA(I) ≤ r.

In such case, A is called an r-approximation algorithm of Π.
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Given two problems Π1 and Π2, we reduce Π1 to Π2 by providing two polynomial time

computable functions f and g, such that f transforms any instance I1 in Π1 into an instance

I2 = f(I1) in Π2, and g transforms any feasible solution of this I2, S2, into a feasible solution

of the initial instance I1, g(S2).

We say the reduction is strict (Π1 ≤S Π2) if in addition, for any instance I1 ∈ IΠ1 and

any feasible solution of f(I1), S2, the performance ratios satisfy

ρΠ1(I1, g(S2)) ≤ ρΠ2(f(I1), S2). (1)

Given such a strict reduction, the optimal solution of f(I1) would lead to an optimal solu-

tion of I1, and furthermore, any feasible solution of f(I1) would lead to a feasible solution

of I1 with better performance ratio. It is straightforward to see that an r-approximation

algorithm of Π2 would lead to an r-approximation algorithm of Π1. Therefore, strict re-

duction preserves the membership of APX. The following lemma will be useful for our

inapproximability proof.

Lemma 2.3.1. If Π1 ≤S Π2 and Π1 /∈ APX, then Π2 /∈ APX.

In other words, if Π1 is strictly reducible to Π2 and cannot be approximated within any

constant factor, neither can Π2.

3 Related Work

Researchers have been interested in localizing 1-dimensional homology classes with the min-

imal volume cycle, namely, the shortest representative cycle. Using Dijkstra’s shortest

path algorithm, Erickson and Whittlesey [19] computed the shortest homology basis of 2-

manifolds, namely, the 1-dimensional homology cycle basis whose elements have the minimal

total volume. Dey et al. [16] provided a polynomial time algorithm to compute such basis

when the input is a general simplicial complex.

These polynomial time algorithms cannot localize an arbitrarily given class. To fill

this void, Chambers et al. [7] (see [18] for a recent improvement) devised an algorithm to

8



localize a given class, when the input is a 2-manifold, with or without boundary. Their

method precomputes the shortest representative cycles of all 2β1 − 1 nontrivial classes, and

thus, is exponential in the 1-dimensional Betti number, β1.

It has been demonstrated that when β1 = Θ(n), localizing a given 1-dimensional class

with its shortest cycle is NP-hard, both in the cases that the topological space is a general

complex [8] and a 2-manifold [7].

Due to the difficulties in localizing with the minimal volume criterion, researchers have

focused on other criteria or heuristics. Some have computed 1-dimensional cycles closely

related to handles which are much more meaningful in low dimensional applications such

as graphics and CAD. Guskov and Wood [21, 29] detected small handles of a 2-manifold

using the Reeb graph of the manifold. Given a 2-manifold embedded in S3, Dey et al. [14]

computed these handle-related cycles by computing the deformation retractions of the two

components of the embedding space bounded by the given 2-manifold. A recent extension

[15] improved their result based on geometric heuristics and persistent homology. Their

work facilitates handle detection in real applications.

All of the aforementioned works are restricted to 1-dimensional homology. Zomorodian

and Carlsson [30] took a different approach to solving the localization problem for general

dimension. Their method starts with a topological space and a cover, which is a set of spaces

whose union contains the original space. They computed a homology basis and localized

classes of it, using tools from algebraic topology and persistent homology. However, both

the quality of the localization and the complexity of the algorithm depend strongly on the

choice of cover; there is, as yet, no suggestion of a canonical cover.

Chen and Freedman [10] presented a polynomial time algorithm for localizing a homol-

ogy class of general dimension with the minimal radius cycle. Their algorithm can also

compute a homology cycle basis with the minimal total radius. The cycle with the minimal

radius, however, may be quite complicated in terms of geometry. See Section 5 for detailed

discussion.

In terms of homology over other fields, Chambers et al. [6] addressed the localization

problem of 1-dimensional homology over other fields by formulating a maximization problem.
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They view a 1-chain as a flow of the 1-skeleton of a simplicial complex. The localization

problem is formalized as finding a maximal flow homologous to a given flow under a given

constraint of the edge capacities. Two 1-chains are homologous if their difference is a 1-

boundary. Their algorithm is exponential in β1 for real coefficients and O(β7
1n log2 n log2 C)

for integer coefficients, where C is the total sum of all the edge capacities.

Dey et al. [13] showed that the localization problem with minimal volume is polynomial

time solvable for a class of spaces when the homology is defined over the integers, Z. In

particular, they showed that when the input space is an orientable (d + 1)-dimensional

manifold and the homology class in question is d-dimensional, the localization problem is

polynomial over Z, despite its being NP-hard over the Z2 field [7].

4 Localization with Volume

4.1 Problem Formalization and a List of Existing Results

Given an cost function defined on all the d-cycles, cost : Zd(K) → R, we formalize the

localization problem as a combinatorial optimization problem.

Problem 4.1.1 (Localizing Homology).

INPUT: a simplicial complex K with size n, a d-dimensional nontrivial homology class

h = [z0], 0 ≤ d ≤ dim(K)

OUTPUT: a cycle z ∈ h

MINIMIZE: cost(z)

In this section, we use volume as the cost function. Other cost functions would be

discussed in Section 5.

Definition 4.1.2 (Volume). The volume of a cycle is the number of its simplices,

vol(z) = card(z)

.
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For example, the volume of a 1-cycle, a 2-cycle and a 3-cycle are the numbers of their

edges, triangles and tetrahedra, respectively. The cycle with the smallest volume, denoted

as zv, agrees intuitively with the notion of a “well-localized” cycle. For convenience, we

denote LocHomVol as the problem of localizing a homology class with its minimal volume

cycle, zv.

More generally, we can extend the volume definition to be the sum of the weights assigned

to simplices of the cycle, given an arbitrary weight function, w : K → R, defined on all the

simplices of K, formally,

vol’(z) =
∑
σ∈z

w(σ).

Computing zv using this general volume definition is at least as hard as using Definition

4.1.2, which is in fact a special case (when w(σ) = 1, ∀σ ∈ K). Therefore, we will only treat

the unweighted volume function.

There are two other variations, which are supposed to be easier than LocHomVol ,

namely, computing a nonbounding cycle with the minimal volume, and computing a homol-

ogy cycle basis with the minimal total volume, formally,

Problem 4.1.3 (Min-Vol Nonbounding Cycle).

INPUT: a simplicial complex K with size n

OUTPUT: a nonbounding d-cycle z, 0 ≤ d ≤ dim(K)

MINIMIZE: vol(z)

Problem 4.1.4 (Min-Vol Basis).

INPUT: a simplicial complex K with size n

OUTPUT: a homology cycle basis {z1, z2, · · · , zβd}, 0 ≤ d ≤ dim(K)

MINIMIZE:
∑βd
i=1 vol(zi)

We name these two problems MinVolNBCyc and MinVolBasis, respectively. For clarity,

we show in Figure 2 the difference between MinVolBasis and LocHomVol. The former is

easier than the latter.

There are some existing hardness results, when the homology classes in question are

1-dimensional.
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z1
z2

Figure 2: A rectangle with two holes. The output of MinVolBasis is the two blue 1-cycles,
z1 and z2. However, the minimal volume cycle in [z1 + z2] is the red cycle, which cannot be
computed using the optimal homology cycle basis.

LocHomVol , β1 = Θ(n) NP-hard
LocHomVol , β1 = O(1), 2-manifolds polynomial
LocHomVol , β1 = O(1), general complexes unknown
MinVolNBCyc polynomial
MinVolBasis polynomial

Table 1: Existing results for 1-dimensional homology.

• When β1 = Θ(n), LocHomVol is proved to be NP-hard by polynomial reductions from

a special case of MAX-2SAT [8] and MIN-CUT with negative edge weights [7].

• Chambers et al. [7] provided a polynomial time algorithm for LocHomVol when β1

is fixed (the algorithm is improved in [18]). The algorithm computes the shortest

representative cycle for each of the 2β1 − 1 nontrivial classes. This work is restricted

to triangulations of 2-manifolds with or without boundaries. The problem remains

open when the input is a general simplicial complex.

• Erickson and Whittlesey [19] devised a polynomial time algorithm for MinVolBasis,

even when β1 = Θ(n). This work is restricted to triangulations of 2-manifolds. Dey

et al. [16] provided a polynomial time algorithm when the input is a general simplicial

complex.

We summarize these results in Table 1.

All these existing results are about 1-dimensional homology. In this paper, we will study

whether LocHomVol is difficult in general dimension, and more importantly, how difficult
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it is.

The existing results suggest that the localization problem might be easier if we assume

fixed Betti number, or if we compute MinVolNBCyc or MinVolBasis instead. Therefore, we

would also like to find out how difficult these problems could be. We prove the inapprox-

imability of a special case of MinVolNBCyc, namely, when βd = 1, which in turn shows that

all the problems we are interested in are NP-hard to approximate when the homology is

2-dimensional or higher.

For the sake of clarity, we list all the new results as follows.

• When the homology in question is 1-dimensional or higher and the Betti number is

Θ(n), it is NP-hard to approximate LocHomVol within any constant factor (Theorem

4.2.4).

• When the homology in question is 2-dimensional or higher, we prove that MinVolNBCyc

is NP-hard to approximate within any constant factor (Theorem 4.3.3). So do LocHomVol

with βd = O(1) and MinVolBasis (Corollary 4.3.4).

• A polynomial time algorithm to compute the minimal volume nonbounding cycle for a

special case: when the pertinent space is embedded in RN and the pertinent homology

is (N − 1)-dimensional.

4.2 LocHomVol is NP-hard to approximate within any constant

factor

We prove by a strict reduction from the nearest codeword problem (NearestCodeword),

which cannot be approximated within any constant factor [2]. Problems used in previous

reductions to LocHomVol [8, 7] have constant approximation ratios, and thus cannot be

used for our proof.

Problem 4.2.1 (Nearest Codeword Problem).

INPUT: an m× k generator matrix A over Z2 and a vector y0 ∈ Zm2 \ span(A)

OUTPUT: a vector y ∈ y0 + span(A)

MINIMIZE: the Hamming weight of y
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Lemma 4.2.2. For 1-dimensional homology, LocHomVol cannot be approximated within

any constant factor.

Proof. We prove by a strict reduction from NearestCodeword, namely,

NearestCodeword ≤S LocHomVol .

Given an instance of NearestCodeword, namely, a generator matrix A and a vector y0,

we first construct a cell complex, T , whose 2-dimensional boundary matrix is A. T has

m 1-cells and k 2-cells corresponding to the m rows and k columns of A. Each 1-cell is a

1-dimensional cycle. Each 2-cell is a pipe with multiple openings. Note that we are abusing

notation when we call T a cell complex, as these cells may not be homeomorphic to closed

balls. See Figure 3 for an example with a 4× 2 generator matrix

A =



1 0

1 1

0 1

0 1


.

Figure 3: The constructed cell complex, T . Two 2-cells (pipes) share four 1-cells (thickened
circles), corresponding to two columns and four rows of A.

The column space span(A) one-to-one corresponds to the set of boundaries of T . The

m-dimensional binary vector space, Zm2 , one-to-one corresponds to the set of 1-cycles of T .

Therefore, NearestCodeword is identical to the problem of computing the minimal volume

representative cycle of a given 1-dimensional class of T , [y0]. However, this problem, denoted

as LocHomVol-T, is different from LocHomVol , whose input is a simplicial complex. We
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will prove in Lemma 4.2.3 that we can strictly reduce LocHomVol-T to LocHomVol by

subdividing T into a simplicial complex K. This concludes the proof.

For convenience, we introduce some notations before proving Lemma 4.2.3. We call a 1-

chain c a simple path if card(c) = card(vert(c))+ 1, and there is a non-repeating sequence of

vert(c), (v1, v2, . . . , vk), such that any two consecutive vertices in the sequence is connected

by an edge of c 2. The first and last vertices are the end vertices. If we identify the two

end vertices, that is, v1 = vk, the chain c is called a simple cycle. In this case, card(c) =

card(vert(c)). We extend the definition of homologous to chains. Two chains are homologous

to each other if their difference is a boundary.

Lemma 4.2.3.

LocHomVol-T ≤S LocHomVol

Proof. We prove by subdividing T into a simplicial complex K, whose size is polynomial to

the size of T . Recall m is the number of 1-cells of T . For each 2-cell of T , σ, we triangulate

it as follows.

1. Cut σ into a polygon with 2a sides, where a is the cardinality of ∂σ. For example, in

Figure 4, σ is cut into an octagon.

2. Triangulate each of the a sides corresponding to 1-cells of T into t1 edges.

3. Triangulate the interior of the polygon fine enough so that for any two vertices from

two non-adjacent sides of the polygon, any path connecting them has at least t1m

edges. See Figure 4 for the case when card(∂σ) = 4, t1 = 4 and m = 5.

Note that the size of K is polynomial to the size of T , and thus can be produced in

polynomial time.

For convenience, we denote the triangulation of all 1-cells of T as K1, which is a sub-

complex of K. The number of edges in K1 is mt1. There is a one-to-one correspondence

between 1-cycles of T and 1-cycles of K1, denoted as φ. For any 1-cycle of T , y, and its

corresponding 1-cycle of K1, φ(y), the ratio of their volumes is 1 : t1.
2This definition is consistent with the definition in graph theory.
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(a) The 2-cell σ is cut into an oc-
tagon along the red curves. ∂σ is
highlighted with thickened lines.

(b) The octagon has 8 sides. 4
of them correspond to 1-cells of T .
Note that the other 4 sides (drawn in
red) are not drawn as straight lines.

(c) A fine triangulation of the polygon. For simplicity, we only
draw 1/4 of the triangulation. The size of this triangulate is poly-
nomial to m and t1.

Figure 4: The triangulation of a 2-cell of T , σ, with card(∂σ) = 4, t1 = 4 and m = 5.

Our construction provides a polynomial transformation of every instance of LocHomVol-T,

(T, y0), into an instance of LocHomVol , (K, z0 = φ(y0)). For any such instance, and any

feasible solution z ∈ [z0], we will show a polynomial time algorithm transforming z into

a cycle z′ ∈ [z0] carried by K1, such that vol(z′) ≤ vol(z). This leads to a solution of

LocHomVol-T, φ−1(z′). For convenience, we denote this solution g(z).
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This reduction is strict. First, the optimal solution of LocHomVol , zv, is a cycle of K1,

whose corresponding solution of LocHomVol-T, g(zv) = φ−1(zv) is the optimal solution of

LocHomVol-T. The ratio of their volumes is vol(zv) : vol(g(zv)) = t1 : 1. Second, for any

feasible solution z, the volume of its corresponding solution in LocHomVol-T is

vol(g(z)) = vol(φ−1(z′)) =
1
t1

vol(z′) ≤ 1
t1

vol(z),

and therefore,
vol(g(z))
vol(g(zv))

≤ vol(z)
vol(zv)

.

This guarantees Inequality (1), and thus the strictness of the reduction.

To conclude this proof, we show that for any given cycle of K, z ∈ [z0] with z0 carried

by K1, there is a polynomial time algorithm which computes a cycle z′ ∈ [z0] carried by K1,

such that vol(z′) ≤ vol(z). We partition z into simple cycles and simple paths by finding

all repeating vertices and vertices of K1. Each simple cycle has no vertex from K1. Each

simple path has no vertices from K1 except for the two end vertices. Next, we deal with

these simple cycles and simple paths one by one. For each simple cycle or simple path,

which is carried by the triangulation of one 2-cell of T , σ, we find a 1-chain homologous to

it and is carried by K1. The new chain has a smaller or equal volume.

There are three cases. Recall that φ maps a 1-chain of T to its subdivision.

(a) Case 1: a simple cycle (red)
is homologous to a 1-cycle (blue)
carried by K1. Note the latter cy-
cle has two components.

(b) Case 2: a simple path (red)
whose end vertices are from the
triangulation of a same 1-cell is
homologous to a 1-chain (blue)
carried by K1.

(c) Case 3: a simple path (red)
connecting vertices from the tri-
angulation of two 1-cells is at
least mt1 long.

Figure 5: Different cases for generating z′.

1. If a simple cycle is trivial, replace it with an empty chain. Otherwise, this cycle is

homologous to a cycle carried by the triangulation of ∂σ, φ(∂σ) ⊆ K1. The latter

cycle has a smaller or equal volume, due to the way we subdivide σ. See Figure 5(a)
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for an example.

2. For a simple path whose both end vertices are from the triangulation of a same 1-cell

of T , τ ∈ ∂σ, it is homologous to a path connecting the two end vertices within φ(τ)

plus cycles which are triangulations of other cells of ∂σ. The latter chain has a smaller

or equal volume, due to the way we subdivide σ. See Figure 5(b).

3. Suppose it is a simple path connecting vertices from the triangulations of two different

1-cells (Figure 5(c)). Such path has a volume of at least mt1. In such case, we let

z′ be the input z0, whose volume is no greater than mt1, and thus no greater than

vol(z).

z′ is computed after we transform all simple paths and simple cycles into homologous

chains and cycles carried by K1, or we let z′ = z0 if Case 3 happens.

Lemma 4.2.2 is about 1-dimensional homology. We extend the result to homology of any

higher dimension.

Theorem 4.2.4. For any d ≥ 1, LocHomVol for d-dimensional homology cannot be ap-

proximated within any constant factor.

Proof. We show that when d ≥ 2, LocHomVol for (d − 1)-dimensional homology can be

strictly reduced to LocHomVol for d-dimensional homology, namely, LocHomVold−1 ≤S

LocHomVold. Together with Lemma 4.2.2, the theorem is proved.

Next, we explain the reduction. Given a simplicial complex of LocHomVold−1, we build

a suspension of it, namely, two cones of the complex glued together at their base [28]. There

is a one-to-one correspondence between the (d− 1)-dimensional cycle group of the original

complex and the d-dimensional cycle group of the new complex. This correspondence also

works for the boundary groups. Since the volume of each (d− 1)-cycle is 1/2 of the volume

of its corresponding d-cycle, this is a strict reduction.

Restriction to a manifold. A natural question is whether the localization problem could

be made easier if we restrict the input to be the triangulation of a manifold. We could
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modify Lemma 4.2.2 and its proof to accommodate this manifold assumption. Specifically,

we embed the cell complex T in RN . By thickening the underlying space of T and taking its

boundary as a new topological space, we get an (N − 1)-manifold (one less dimension than

the ambient space). This manifold can be triangulated in a similar way as we triangulate

T , and thus leads to the inapproximability of LocHomVol for 1-dimensional homology when

the input is the triangulation of an (N − 1)-manifold. We omit a formal description of such

reduction. See Figure 4.2 for an example when T is 1-dimensional and N = 2.

(a) The 1-dimensional cell com-
plex T , embedded in R2.

(b) Triangulate T into a simpli-
cial complex, according to the
scheme in Lemma 4.2.3.

(c) Take the boundary of the
thickened T as the new topologi-
cal space, which is a 1-manifold.

(d) Triangulate the 1-manifold according
to the way T is triangulated. The trian-
gulation is polynomial.

Figure 6: An example of modifying proof of Lemma 4.2.3 to accommodate the manifold
assumption.

A classical result suggests that we can embed the 2-dimensional cell complex T in R5.

Using an analog of book embedding an arbitrary graph in R3 [27], we can embed T in R4.

Therefore, we prove the problem is NP-hard to approximate for 1-dimensional homology

when the input is the triangulation of a 3-manifold. This raises the open question that

whether localizing a 1-dimensional class of a 2-manifold is NP-hard to approximate (it has

already been proved to be NP-hard to compute).

A similar argument can be applied to other problems we will discuss in the next section,

except that in Lemma 4.3.1, the relevant homology is 2-dimensional, the cell complex T is

3-dimensional and the manifold is 4-dimensional.
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4.3 MinVolNBCyc is NP-hard to approximate within any constant

factor

In the previous section, the simplicial complex we constructed for LocHomVol has Θ(n)

Betti number. It has been revealed for 1-dimensional homology that

• MinVolNBCyc and MinVolBasis can be solved in polynomial time, and

• LocHomVol with β1 = O(1) can be solved in polynomial time when the input is the

triangulation of a 2-manifold, with or without boundary.

This raises the question of whether these three problems are hard for homology of dimension

two or higher. Our main result in this section is the inapproximability proof of a special

case of MinVolNBCyc (Theorem 4.3.3). This trivially leads to the inapproximability of all

the aforementioned problems (Corollary 4.3.4).

Lemma 4.3.1. For 2-dimensional homology, even when β2 = 1, MinVolNBCyc is NP-hard

to approximate within any constant factor.

Proof. We prove by a strict reduction from NearestCodeword, namely,

NearestCodeword ≤S MinVolNBCyc .

Given an instance of NearestCodeword, we consider the generator matrix C = [A, y0] and

its parity-check matrix C⊥ (the dimension is (m− k− 1)×m). Following a scheme similar

to Lemma 4.2.2 (illustrated in Figure 3), we construct a cell complex T2 using C⊥ as the

2-dimensional boundary matrix. T2 has m−k−1 1-cells and m 2-cells. There is a one-to-one

correspondence between the 2-dimensional cycle group of T2 and nullspace(C⊥) = span(C).

This cycle group has dimension k + 1 and is spanned by the column vectors of A and y0.

Next, for each column vector of A, we seal the corresponding 2-cycle in T2 with a 3-

cell. T2 is the 2-skeleton of the augmented complex, which is denoted as T . The one and

only nontrivial 2-dimensional homology class of T is identical to the coset y0 + span(A).

Finding the smallest volume nonbounding 2-cycle of T , denoted as MinVolNBCyc-T, is
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equal to finding the minimal Hamming weight vector in this coset and thus equal to solving

NearestCodeword. It suffices to show that MinVolNBCyc-T can be strictly reduced to

MinVolNBCyc, by subdividing T .

In order to triangulate T into a simplicial complex K, we first subdivide the 2-skeleton,

T2, into a simplicial complex K2, in which all 2-cells are triangulated into the same number

of triangles (say, t2). There is a one-to-one correspondence between the 2-dimensional cycle

groups Z2(K2) and Z2(T2) = Z2(T ). The volume of each 2-cycle of K2 is t2 times that of

its corresponding cycle.

Next, while keeping K2 intact, we triangulate interior of the 3-cells fine enough so that

for any nonbounding 2-cycle of K, z ∈ [z0] with z0 carried by K2, we can always find in

polynomial time a nonbounding 2-cycle of K2, z′ ∈ [z0], with a smaller or equal volume.

(This is similar to the triangulation strategy in Lemma 4.2.3.) Due to the one-to-one

correspondence between Z2(K2) and Z2(T ) and the t2:1 ratio of their volumes, we have a

strict reduction from MinVolNBCyc-T to MinVolNBCyc.

Remark 4.3.2. Whereas β2 and β3 of the constructed K are 1 and 0 respectively, the 1-

dimensional Betti number, β1, could be linear in the size of K. However, we can remedy

this by computing an arbitrary 1-dimensional homology cycle basis and seal all its elements

with additional triangles. This will not influence the reduction. This way, we prove the

inapproximability for complexes with bounded Betti numbers of all dimensions.

Similar to Theorem 4.2.4, we can extend the result to any higher dimension by a

suspension-building-based strict reduction of any MinVolNBCyc problem for (d−1)-dimensional

homology to that for the d-dimensional homology.

Theorem 4.3.3. Even when the relevant Betti number is 1, MinVolNBCyc is NP-hard to

approximate within any constant factor for homology of dimension two or higher.

So far the inapproximability proof is for MinVolNBCyc with βd = 1. This trivially

leads to the inapproximability of the general MinVolNBCyc. Furthermore, we extend the

inapproximability to the other two problems.
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Corollary 4.3.4. For homology of dimension two or higher, the following problems are

NP-hard to approximate within any constant factor:

1. MinVolBasis;

2. LocHomVol with fixed Betti number.

Proof. We show that the special case MinVolNBCyc can be computed in polynomial time

from the output of the other two problems. This leads to the inapproximability.

Given the output of MinVolBasis, the homology cycle basis with the minimal total

volume, the minimal volume nonbounding cycle is in this basis.

For LocHomVol with fixed Betti number, we enumerate all nontrivial classes and find

their minimal volume representatives. The minimal volume nonbounding cycle is one of

those representatives.

4.4 A Polynomial Special Case

There is, however, a special case in which MinVolNBCyc can be computed in polynomial

time, even with linear Betti number: when K is an N -dimensional complex embedded in

RN and the pertinent nonbounding cycle is (N −1)-dimensional. In this section, we provide

a polynomial time algorithm, inspired by [22, 7]. It is not hard to generalize this algorithm

to MinVolBasis and LocHomVol.

We add new N -cells to K to get a new complex K ′, whose underlying space is RN . Each

new cell covers one component of RN\|K|. There are βN−1 + 1 new cells, one of which

covers the infinity component. The boundary of each new cell is one component of the

(N − 1)-dimensional boundary of K. Here we are abusing notation again as the new cells

may not be homeomorphic to closed balls.

We use the MIN-CUT algorithm on the dual graphs to solve the problem. The dual

graph of K, G, is a subgraph of the dual of K ′, G′. Denote vertex sets of G and G′ as V

and V ′, respectively. The set of new vertices V ′\V is dual to the set of new N -cells. See

Figure 7 for an example when N = 2.
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We call a cycle minimal if none of its non-empty subsets is a cycle. We denote C(G′, G)

as the set of minimal edge cuts (cuts whose subsets are not cuts) of G′ which cut G′ into

two partitions each of which contains at least one vertex of V ′\V . There is a one-to-one

correspondence between the set of minimal nonbounding (N − 1)-cycles of K and the set of

cuts C(G′, G). The volume of each cycle is equal to the cardinality of its corresponding cut.

As the nonbounding (N − 1)-cycle with the smallest volume has to be one of the minimal

cycles, it can be computed by computing the cut in C(G′, G) with the smallest cardinality.

To compute the minimal cardinality cut in C(G′, G), we enumerate all pairs of vertices,

(v1, v2) ∈ (V ′\V )× (V ′\V ). Compute the minimal (v1-v2)-cut for each pair. The one with

the smallest cardinality is the desired one.

Since the cardinality of V ′\V is βN−1+1, the complexity of this algorithm isO(β2
N−1f(n))

where n is the size of the simplicial complex and f(n) is the complexity of the MIN-CUT al-

gorithm. Using MIN-CUT algorithms whose complexity is O(n2 log n), the whole algorithm

has complexity O(β2
N−1n

2 log n).

Remark 4.4.1. The idea can be carried over to the case of a weighted volume function, but

only if the weight function is non-negative.

Figure 7: A 2-dimensional simplicial complex embedded in R2. The dual graph G and G′

are drawn in solid lines and vertices. Their difference, G′\G, includes vertices p1, p2, p3 and
their incident edges.
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5 Localization with Other Geometric Criteria

5.1 Diameter

When LocHomVol is proved to be NP-hard to approximate, we resort to discrete geodesic

distance related cost functions, diameter and radius.

Definition 5.1.1 (Diameter). The diameter of a cycle is the diameter of its vertex set,

diam(z) = diam(vert(z)), in which the diameter of a set of vertices is the maximal discrete

geodesic distance between them, formally,

diam(S) = max
p,q∈S

dist(q).

Intuitively, a representative cycle of h with the minimal diameter, denoted zd, is the

cycle whose vertices are as close to each other as possible. The intuition will be further

illustrated in Section 5.2 by comparison against other criteria. We prove in Theorem 5.1.4

that computing zd of h is NP-hard, by reduction from a special case of the NP-hard Multiple-

Choice Cover Problem (MCCP) of Arkin and Hassin [1]. The theorem has been stated in

our previous paper [9]. But the proof has not been published.

Remark 5.1.2. We do not address the approximability of LocHomDiam, as we realize that

zd suffers from a “wiggling problem” and consequently may be geometrically complex (see

Section 5.2). However, it is not hard to see that the reduction in Theorem 5.1.4 is strict,

which implies that LocHomDiam cannot be approximated any better than this special case of

MCCP, which cannot be approximated within 2− ε for any ε > 0, though we do not establish

this formally.

Problem 5.1.3 (Multiple-Choice Cover Problem).

INPUT: a set of vertices, V = {v1, v2, ..., vn}; a distance function dist : V × V → R+

satisfying triangular inequality; Disjoint subsets of V , S1, S2, ..., Sm, such that
⋃m
i=1 Si = V

OUTPUT: a cover C ⊆ V containing one and exactly one vertex from each subset Si

MINIMIZE: diam(C)
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Note that the original MCCP problem of Arkin and Hassin only requires the cover to

have nonempty intersection with each subset Si. We revise the problem to facilitate our

proof, without influencing the NP-hardness. The reason is the optimal result of the revised

problem is clearly an optimal result of the original problem.

Theorem 5.1.4. LocHomDiam is NP-hard to compute.

Proof. We present a polynomial-time algorithm transforming an input of MCCP into an

input of LocHomDiam. Later we will show that the solution of LocHomDiam gives us the

solution of MCCP. As part of the input of LocHomDiam, the constructed simplicial complex

K consisting of m tubes, T1,...,Tm, as well as extra edges connecting vertices.

We first embed the vertex set V in any metric space preserving the pairwise distance

dist(·, ·). Without loss of generality, we assume V is embedded in the Euclidean plane R2, for

ease of explanation. For each vertex subset Si, we find a simple path in R2, going though

each vertex of Si once without self-intersection, ξi = (v1, v2, ..., vcard(Si)), which contains

card(Si)− 1 edges. The edge lengths are the same as the distances between corresponding

vertices. See Figure 8(a). We construct a a slender threadlike tube Ti, which carries the

path ξi. Ti has (3 card(Si)) vertices, Si ∪ S′i ∪ S′′i , where

S′i = {v′1, v′2, ..., v′card(Si)
}, and S′′i = {v′′1 , v′′2 , ..., v′′card(Si)

}.

For any j, v′j and v′′j lie very close to vj . Corresponding to the card(Si)− 1 edges in ξi, Ti

consists of card(Si)− 1 triangular cylinder concatenated together. By a triangular cylinder

we mean the surface of a 3-prism with the two end triangles missing. To facilitate the

concatenation, corresponding edges of the end triangles may not be parallel to each other,

as in a standard 3-prism. Each edge vjvj+1 corresponds to a triangular cylinder with vertices

vj , v′j , v
′′
j , vj+1, v′j+1 and v′′j+1. In the triangular cylinder, the short edges are very short,

say, no longer than ε. The long edges have the length similar to the length of edge vjvj+1.

See Figure 8(b) for one such triangular cylinder.

We construct the simplicial complex, K, as follows. For any i, Ti ⊆ K. For any two

vertices v1, v2 ∈ V , if they are not neighbors, add an edge connecting them, whose length
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(a) An input of MCCP: 3 disjoint vertex sub-
sets in Euclidean plane, S1, S2 and S3. The
simple paths, ξ1, ξ2 and ξ3, are also shown,
although they are not part of the input.

(b) A triangular cylinder
corresponding to the edge
vjvj+1.

(c) The constructed simplicial complex K. For ease of presentation, we only show
the new edges connecting vertices in S2 ∪ S3; however, note that there are other
edges in K which are omitted in this figure.

Figure 8: Explanation of theorem 5.1.4 proof.

is their Euclidean distance in the Euclidean plane R2. See Figure 8(c) for the complex

constructed from the input in Figure 8(a). Note that although in the figure, the embedding

of K in R3 has self-intersection, the simplicial complex K can be embedded in Euclidean

space of higher dimension, as we did in previous proofs.

For the constructed complex K, we use LocHomDiam to localize the 1-dimensional class∑m
i=1 hi, where hi is the only 1-dimensional class carried by the tube Ti. We need a cycle to

represent it as the input for LocHomDiam. We use z0 =
∑m
i=1 zi0 , where zi0 is the 1-cycle

whose vertices are vi0 , v′i0 and v′′i0 , in which vi0 is an arbitrary vertex in Si.

Next, we construct a cover C from the solution of LocHomDiam, z, and show that C

is the solution of MCCP. We construct an intermediate vertex set C0 ⊆ V as follows. A

vertex v belongs to C0 if and only if any of vi, v′i and v′′i belongs to the vertex set of z,

vert(z). The solution z is in the form
∑m
i=1 zi, where zi represents class hi. Therefore, C0

has nonempty intersection with each vertex set Si. We compute the cover C by picking one

vertex from each Si ∩ C0.
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Within the simplicial complex,

diam(C) = diam(C0) and |diam(C0)− diam(z)| ≤ 2ε.

Furthermore, C has the same diameter in the simplicial complex, K, and in the Euclidean

plane, R2. Since ε is arbitrarily small, we can see that C is the cover with the minimal

diameter in the Euclidean plane, and thus, is the solution of MCCP.

5.2 Radius

Another option for the cost function is radius.

Definition 5.2.1 (Radius). The radius of a cycle is the radius of the smallest geodesic ball

carrying it, formally,

rad(z) = min
p∈vert(K),z⊆Brp

r

Given a homology class, the representative cycle with the minimal radius, denoted as zr,

is the same as the localized cycle defined in our previous work [9, 10]. Intuitively, zr is the

cycle whose vertices are as close to a vertex of K as possible. Theorem 5.2.3 shows that zr

can be computed in polynomial time.

However, in spite of its ease of computation, zr may not necessarily be concise in an

intuitive sense. It wiggles freely inside the smallest geodesic ball carrying it. See Figure

9(a) for example, in which we localize the only nontrivial homology class of an annulus (the

light gray area). The dark gray area is the smallest geodesic ball carrying the class, whose

center is p. Note that the geodesic ball of the annulus may not seem like a disc in the

embedded Euclidean plane.

By contrast, the cycle with the minimal diameter, zd, avoids this wiggling problem in

this case and is concise in an intuitive sense (Figure 9(b)). This figure also illustrates that

the radius and the diameter of a cycle are not strictly related. For the cycle zr in Figure

9(a), its diameter is twice of its radius. For the cycle zd in Figure 9(b), its diameter is equal

to its radius.

27



(a) The cycle with the minimal ra-
dius, zr.

(b) The cycle with the minimal di-
ameter, zd.

(c) A cross-section of a 3-dimensional
ball with a bone shape void. zd, which
is 2-dimensional, wiggles near the mid-
dle of the bone.

Figure 9: Cycles with the minimal radius and diameter.

We prove that zr is a 2-approximation of zd.

Theorem 5.2.2. diam(zr) ≤ 2 diam(zd).

Proof. First, the triangle inequality of the geodesic distance suggests that for any two ver-

tices of zr, p1 and p2, their geodesic distance is

dist(p1, p2) ≤ dist(p1, p0) + dist(p0, p2) ≤ 2 rad(zr),

where p0 is the center of the smallest geodesic ball carrying the cycle zr and the class. This

implies that the diameter of zr is no greater than twice of its radius.

Second, the diameter of zd is no less than its radius. To see this, pick a geodesic ball

centered at any vertex of zd with radius diam(zd). This ball carries zd. Finally,

diam(zr) ≤ 2 rad(zr) ≤ 2 rad(zd) ≤ 2 diam(zd).

As shown in Figure 9(a) and 9(b), this bound is a tight bound.

However, in general, the minimal diameter cycle also suffers from the wiggling problem.

In Figure 9(c), we show an example in which the topological space is a closed 3-dimensional
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ball with a bone shape void in the middle. The minimal diameter 2-cycle, zd, representing

the only nontrivial 2-dimensional class, can freely wiggle near the middle of the bone, as

the diameter is determined by the distance of the two ends of the bone. The reason for

this phenomenon is in finding the minimal diameter cycle, we minimize the maximum of

all pairwise geodesic distances. It is not hard to see that zd does not wiggle only if for any

v ∈ vert(zd), its longest distance from other vertices in zd is close to diam(zd).

We conclude this section by showing that zr can be computed in polynomial time. The

proof is a short sketch of a polynomial time algorithm of Chen and Freedman [10].

Theorem 5.2.3. We can compute zr in polynomial time.

Proof. For each vertex, p, we find the smallest geodesic ball centered at p carrying any cycle

in [z0], namely, Br(p)p , as well as the carried cycle. Iterating through all vertices p ∈ vert(K),

the one with the smallest r(p) gives us zr.

To compute Br(p)p , we apply persistent homology on the complex using fp as the filter

function. Persistent homology algorithm computes a homology cycle basis, {z1, z2, · · · ,

zβd}, sorted according to the time they enter the sublevel set. We find the smallest index i

so that z0 is a linear combination of boundaries and z1, z2, · · · , zi, namely,

z0 = [∂d+1, z1, z2, · · · , zi]γ, (2)

where d is the dimension of the class in question. This can be computed by applying the

persistence reduction to the matrix [∂d+1, z1, z2, · · · , zβd ]. The time zi enters the sublevel

set is the radius r(p). Replacing ∂d+1 with 0, we get a representative cycle of [z0] carried

by Br(p)p , [0, z1, z2, · · · , zi]γ.

The algorithm applies persistent homology algorithm O(card(vert(K))) times. There-

fore, the complexity is O(n4), where n is the size of the simplicial complex.
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6 Conclusion

In this paper, we have addressed the localization problem with regard to three different

measures. For volume, we have proved inapproximability results. We have also proved

the inapproximability of computing the nonbounding cycle with the minimal volume and

computing the homology cycle basis with the minimal total volume. A special case in which

polynomial time algorithm exists has also been discussed.

For diameter, we have proved that the localization problem is NP-hard; for radius,

by contrast, we have stated a polynomial time algorithm. Both of these two measures,

however, suffer from the “wiggling problem”, namely, that the output of the localization

may be geometrically quite complex.

We summarize all the constructed strict reductions in this paper as follows. The argu-

ments of a problem – specifically, the dimension d of the relevant homology group, and Betti

numbers of the input simplicial complex – are contained in square brackets.

• NearestCodeword ≤S LocHomVol-T[d = 1] ≤S LocHomVol[d = 1]

≤S LocHomVol[d ≥ 1]

• LocHomVol ≤S LocHomVol, with manifold assumption

• NearestCodeword ≤S MinVolNBCyc[d = 2, β2 = 1]

≤S MinVolNBCyc[d ≥ 2, βd = 1]

• MinVolNBCyc[d ≥ 2, βd = 1] ≤S MinVolBasis[d ≥ 2]

• MinVolNBCyc[d ≥ 2, βd = 1] ≤S LocHomVol[d ≥ 2, βd = O(1)]

• MCCP ≤S LocHomDiam

An open question is whether we can use other discrete geodesic distance related measures,

besides diameter and radius, which do not suffer from the wiggling problem. For example,

can we use the normalized sum of the pairwise geodesic distances? Furthermore, what if we

restrict the geodesic distance to be within the cycle (rather than the entire complex)? It is
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conceivable that these distance related measures might be easier to compute, as localization

with the volume measure has been shown to be extremely hard.
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