Design and Analysis of Algorithms

Hoeteck Wee · hoeteck@cs.qc.cuny.edu
http://www.cs.qc.edu/~hoeteck/f09/
Directed graphs

BASICS. \(n \) nodes/vertices, \(m \) directed edges
 ▶ e.g. nodes = web pages, edges = hyperlinks

REPRESENTATION. adjacency list, each node has two associated lists:
 nodes to which it has edges and nodes from which it has edges

DIRECTED REACHABILITY.
 ▶ given a node \(s \), find all nodes reachable from \(s \).
 ▶ e.g. in web crawler, find all web pages linked from \(s \).

DIRECTED S-T SHORTEST PATH PROBLEM.
 ▶ given two nodes \(s \) and \(t \), what is the shortest path from \(s \) to \(t \)?

BREADTH-FIRST SEARCH. layer-by-layer outward search from \(s \)
 ▶ layer \(L_i \) : nodes where the shortest path from \(s \) has exactly \(i \) edges
 ▶ running time \(O(m + n) \)
DEFINITIONS.

- nodes u and v are mutually reachable if \exists a path from u to v and from v to u
- a directed graph is strongly connected if every pair of nodes is mutually reachable
- the strong component of a node s is the set of nodes v s.t. s and v are mutually reachable

FACT. for any two nodes s and t in a directed graph, their strong components are either identical or disjoint.

- mutual reachability is an equivalence relation

ALGORITHM. can find the strong component of a node in $O(m + n)$ time.

- Run BFS in G and G^{REV}, compute the intersection.
- Can find all strong components in $O(m + n)$ time.
- Can determine if G is strongly connected in $O(m + n)$ time.
Definition. A DAG is a directed graph that contains no (directed) cycles.

- typically precedence relations or dependencies, e.g. courses & prerequisites

Definition. A topological ordering of a DAG is an ordering v_1, \ldots, v_n of its nodes so that for every edge (v_i, v_j), we have $i < j$.

- i.e. all edges point from left to right
- e.g. scheduling lectures so that all dependencies are respected

Fact. If G has a topological ordering, then G is a DAG.

- converse is also true! – can we compute the ordering efficiently?
PROBLEM. given a DAG, compute a topological ordering.

- getting started: node v_1 and incident edges.

FACT. in every DAG, there exists a node v with no incoming edges.

- suppose otherwise: every node has in-degree ≥ 1
- fix any node v, and keep walking backwards
- must visit some node w twice
- yields a cycle, a contradiction!

ALGORITHM.

- find a node v with in-degree 0
- delete v and recurse on $G - \{v\}$
Topological sort

(a) Diagram of a directed graph with vertices labeled v_1 to v_7 and edges indicating dependencies.

(b) Another diagram of a directed graph with vertices labeled v_2 to v_5 and edges indicating dependencies.

(c) A simplified diagram with vertices labeled v_3 and v_4 with dependencies.

(d) Diagram with vertices v_6 to v_7 and dependencies.

(e) Diagram with vertices v_6 to v_5 and dependencies.

(f) A simplified diagram with single vertex v_6 and dependency.
Topological sort

ALGORITHM.

- find a node v with in-degree 0
- delete v and recurse on $G - \{v\}$

IMPLEMENTATION.

- maintain $\text{indegree}[w]$ and set of undeleted nodes
- initializing $\text{indegree}[w]$: $O(m + n)$ time
- deleting v and updating indegree takes $O(\text{outdeg}(v))$ time
- finding a new node with in-degree 0? (maintain a queue of in-degree 0 nodes)
- overall running time $O(m + n)$
GREEDY ALGORITHMS
First representative problem

INTERVAL SCHEDULING.

- Input: set of jobs with start and finish times.
- Find **max cardinality** subset of compatible (i.e. non-overlapping) jobs.

GREEDY TEMPLATE. use a simple rule to pick the first job and repeat, ignoring incompatible jobs
Interval scheduling

GREEDY TEMPLATE. use a simple rule to pick the first job and repeat, ignoring incompatible jobs

- attempt 1: earliest start time
- attempt 2: shortest interval
- attempt 3: fewest conflicts
- “correct” approach: earliest finish time
Interval scheduling

Intervals numbered in order

Selecting interval 1

Selecting interval 3

Selecting interval 5

Selecting interval 8
THEOREM. Greedy algorithm is optimal.

- **GREEDY:** jobs i_1, i_2, \ldots, i_k
- **OPT:** jobs j_1, j_2, \ldots, j_m

CLAIM. **GREEDY** stays head, i.e.: for all r, $f(i_r) \leq f(j_r)$

- **inductive step:** suppose $f(i_{r-1}) \leq f(j_{r-1})$
- **observation:** if $f(i_r) > f(j_r)$, then **GREEDY** will pick j_r as r'th interval
- **follows from claim that** $k \geq m$
THE END