QUESTION. what does \(a = [[]] \times 5 \) mean in Python?

Python 2.5.1 (r251:54863, Feb 6 2009, 19:02:12)

```python
>>> a = [1] * 5
>>> a[0] = 2
>>> a
[2, 1, 1, 1, 1]
>>> a = [[1]] * 5
>>> a[0].append(1)
>>> a
[[1, 1], [1, 1], [1, 1], [1, 1], [1, 1]]
```
PROBLEM. minimum spanning tree (MST) problem

- input: a set of locations $V = \{v_1, \ldots, v_n\}$, with costs for building a (undirected) link between some pairs of locations
- goal: build the cheapest communication network s.t. every pair of locations is connected (cost of a network = sum of link costs)

FACTS.

- removing any edge from a cycle in a connected graph leaves the graph connected.
- every n-node tree has exactly $n - 1$ edges.
- the complete graph K_n has n^{n-2} spanning trees.
Algorithm. Incrementally add least cost edges that do not make a cycle.

- Sort edges by cost, \(T = [] \)
- For each edge \(e \) in edges:
 - If adding \(e \) to \(T \) does not create a cycle:
 - Append \(e \) to \(T \)
- Return \(T \)

1. Add \((a, d)\)
2. Add \((c, e)\)
3. Add \((d, f)\)
4. Add \((a, b)\)
5. Add \((b, e)\)
6. Add \((e, g)\)
Kruskal’s MST algorithm

CLAIM. first i selected edges are part of some MST, $i = 0, 1, \ldots, n - 1$.

- proof by induction on i; $i = 0$ is trivial.
- suppose first i selected edges e_1, \ldots, e_i are part of some MST T.
- done if next selected edge e_{i+1} is in T.

OTHERWISE. adding e_{i+1} to T creates a cycle C.

- property 1: C contains an edge $f \in T$ different from e_1, \ldots, e_{i+1}
- property 2: $c(e_{i+1}) \geq c(f)$
- remove f from C to form a spanning tree T'
- $c(T') = c(T) + c(e_{i+1}) - c(f) \leq c(T)$
- thus T' is a MST containing e_1, \ldots, e_{i+1}
Kruskal's MST algorithm

Algorithm. Incrementally add least cost edges that do not make a cycle

1. Sort edges by cost, \(T = [] \)
2. For each edge \(e \) in edges:
 - If adding \(e \) to \(T \) does not create a cycle:
 - Append \(e \) to \(T \)
3. Return \(T \)

Rewriting the for loop:

1. For each edge \((u,v) \) in edges:
 - If \(u \) and \(v \) are in different connected components in \(T \):
 - Append \(e \) to \(T \)

Need to maintain connected components of \(T \) with efficient “merge”
Kruskal’s MST algorithm

UNION-FIND. data structure for disjoint sets with efficient merge

- **MAKEUNIONFIND**(S) initializes with all elements of S in separate sets
- **FIND**(u) returns the name of the set containing u
- **UNION**(A, B) merges two sets A and B

IMPLEMENTATION (KRUSKAL’S). use union-find for intermediate T

sort edges by cost

T = makeunionfind(nodes) ## start with n connected components

for e=(u,v) in edges:
 if T.find(u) != T.find(v) ## adding e does not create a cycle
 T.union(T.find(u), T.find(v)) ## merge components for u, v

return T

- **Running time:** $O(m \log m) = O(m \log n)$ plus **MAKEUNIONFIND** and $O(m)$ **FIND** and $O(n)$ **UNION** operations
Kruskal’s MST algorithm

UNION-FIND. data structure to maintain disjoint sets (e.g. connected components of a graph) and supports merge operations

- **MAKEUNIONFIND(S)** initializes with all elements of S in separate sets
- **FIND(u)** returns the name of the set containing u
- **UNION(A, B)** merges two sets A and B

IMPLEMENTATION. simple array-based union-find

- maintain an array **component** that maps u to set containing u
- each disjoint set is named after a “representative” element
- **MAKEUNIONFIND(S)**: set component[s] = s for all elements of S
- **UNION(A, B)**: name $A \cup B$ after the larger set (requires $\min(|A|, |B|)$ updates to **component**)

RUNNING TIME.

- **MAKEUNIONFIND(S)**: $O(n)$ time where $n = |S|$
- **FIND(u)**: $O(1)$ time
- **UNION(A, B)**: $O(k \log k)$ time for any sequence of k such operations
Prim’s MST algorithm

ALGORITHM. build a single tree incrementally by adding least cost edges

\[S, T = [s], [] \] # pick any start vertex \(s \)

while len(T) != n-1:
 let e be cheapest edge with exactly one end-point in S
 T.append(e)
 S.append(end-point of e outside S)

return T

1. add \((a, d)\)
2. add \((d, f)\)
3. add \((a, b)\)
4. add \((b, e)\)
5. add \((c, e)\)
6. add \((e, g)\)
Prim’s MST algorithm

IMPLEMENTATION. use a priority queue (ala Dijkstra’s).

▶ store nodes outside S in a priority queue H
▶ key of a node u is cost of cheapest edge connecting u to some node v in S

\[
\text{while } \text{len}(T) \neq n-1:\n\]
\[
u = H.\text{extractmin}()\]
\[
T.\text{append}((u,v))\]
\[
S.\text{append}(u)\]
\[
\text{for } w \text{ in } \text{nb}[u]:\n\]
\[
\text{if } w \text{ not in } S:\n\]
\[
H.\text{changekey}(w, \ldots)\]

\text{return } T

▶ running time: $O(m + n)$ plus n EXTRACTMIN and m CHANGEKEY operations
▶ can implement CHANGEKEY in min-heap with INSERT/DELETE or HEAPIFY-UP/HEAPIFY-DOWN along with a reverse look-up table
▶ total running time: $O(m \log n)$
PROBLEM. divide \(n \) objects into \(k \) groups (a \(k \)-clustering) so that objects in different groups are as far apart (different) as possible.

- e.g. categorizing documents, grouping customers based on movie preferences

INPUT. \(n \) objects \(p_1, \ldots, p_n \), parameter \(k \), and a distance measure \(d(\cdot, \cdot) \)

- \(d(p_i, p_i) = 0 \) and \(d(p_i, p_j) > 0 \) for \(i \neq j \); \(d(p_i, p_j) = d(p_j, p_i) \)

GOAL. partition \(p_1, \ldots, p_n \) into \(k \) non-empty sets with maximum spacing

- spacing: minimum distance between any point of points in different clusters (measures how far apart the clusters are)
ALGORITHM. Start with \(p_1, \ldots, p_n \) in \(n \) different clusters and keep merging closest clusters until we have \(k \) clusters (like Kruskal’s).

- Sort pairs of points by distance.
- \(C = \text{makeunionfind}(\text{points}) \)
- For (p,q) in pairs:
 - If \(C.\text{find}(p) \neq C.\text{find}(q) \)
 - \(C.\text{union}(C.\text{find}(p), C.\text{find}(q)) \)
 - If \(C.\text{size}() == k \):
 - Return \(C \)

- Running time: \(O(n^2 \log n) \)
- Same as computing a MST and deleting the \(k - 1 \) most expensive edges.
THE END