Administration

- there is a mid-term next week (oct 7)
- one double-sided cheat-sheet
- topics: up to yesterday’s lecture (greedy)
DIVIDE-AND-CONQUER ALGORITHMS
Mergesort

PROBLEM. sort a list of n numbers a_1, \ldots, a_n.

ALGORITHM. divide-and-conquer

1. **divide.** divide a into two pieces: $a[:\text{mid}]$ and $a[\text{mid}:]$
2. **conquer.** recursively sort each half
3. **combine.** merge two sorted halves into a single sorted list

```python
def mergesort(a):
    if len(a) <= 1:
        return a
    else:
        mid = len(a)/2
        return merge(mergesort(a[:mid]), mergesort(a[mid:]))
```

RUNNING TIME. $T(n) = 2T(n/2) + O(n)$
Our first recurrence

PROBLEM. solve for $T(n)$, given that for some constant c

$$T(2) \leq c$$

$$\forall n > 2, \quad T(n) \leq 2T(n/2) + cn$$

1ST TECHNIQUE. “unroll” the recurrence

- see Textbook, chapter 5.1

2ND TECHNIQUE. guess and check

- guess $T(n) \leq cn \log_2 n$ for all $n \geq 2$

- prove by induction
PROBLEM 2. solve for $T(n)$, given that for some constant c

\[T(2) \leq c \]

\[\forall n > 2, \quad T(n) \leq T(n/2) + cn \]

1ST TECHNIQUE. “unroll” the recurrence

\[T(n) \leq T(n/2) + cn \]

\[\leq (T(n/4) + cn/2) + cn \]

\[\leq \cdots + cn/8 + cn/4 + cn/2 + cn \]

\[\leq 2cn \]
More recurrences

1. \(T(n) = qT(n/2) + O(n) \)
 - \(q = 1 \): \(T(n) = O(n) \)
 - \(q = 2 \): \(T(n) = O(n \log n) \)
 - \(q > 2 \): \(T(n) = O(n^{\log_2 q}) \)

2. \(T(n) = 2T(n/2) + O(n^2) \)
 - \(T(n) = O(n^2) \)
Recommendation systems

GOAL. match your preferences with those of others on the Internet.

- c.f. amazon (books), netflix (movies)
- preferences are given as rankings
- want to identify (cluster) people with similar “tastes”

QUESTION. how to compare rankings?
PROBLEM. count the number of inversions in a list of \(n \) numbers \(a_1, \ldots, a_n \).

- two indices \(i < j \) form an inversion if \(a_j > a_i \) (i.e., \(a_i, a_j \) are “out of order”)
- e.g. \([2, 1, 4, 3, 6, 5]\) has 3 inversions, \([4, 5, 6, 1, 2, 3]\) has 9 inversions
- between 0 (complete agreement) and \(n(n-1)/2 \) (complete disagreement)

RANKINGS.

- label movies from 1 to \(n \) according to your ranking
- order these labels according to stranger’s ranking
- count the number of inversions

NAIVE ALGORITHM. check all pairs, \(O(n^2) \) time

DIVIDE-AND-CONQUER. aiming for \(O(n \log n) \) time

1. divide. divide a into two pieces: \(a[:\text{mid}] \) and \(a[\text{mid}:] \)
2. conquer. recursively compute inversions in each half
3. combine. count inversions where \(a_i, a_j \) are in different halves, and return sum of 3 quantities

EXAMPLE: \([2, 1, 4, 3, 6, 5]\) : \(1 + 1 + 1 \), \([4, 5, 6, 1, 2, 3]\) : \(0 + 0 + 9 \)
Counting inversions

PROBLEM. count the number of *inversions* in a list of \(n \) numbers \(a_1, \ldots, a_n \).

DIVIDE-AND-CONQUER ALGORITHM. (first attempt)

```python
def invcount(a):
    if len(a) <= 1: return 0
    else:
        mid = len(a)/2
        return invcount(a[:mid]) ## left, left
        + invcount(a[mid:]) ## right, right
        + crosscount(a[:mid], a[mid:]) ## left, right
```

REMARKS.

- want `crosscount` to run in \(O(n) \) time like merge
- easier if we also sort the two halves \(a[:\text{mid}], a[\text{mid}:] \)
- next: `sortcount` returns number of inversions and sorted list
Counting inversions

Problem. Count the number of inversions in a list of n numbers a_1, \ldots, a_n.

Divide-and-Conquer Algorithm.

```python
def sortcount(a):
    if len(a) <= 1: return (0, a)
    else:
        mid = len(a)/2
        (left, ans1) = sortcount(a[:mid])
        (right, ans2) = sortcount(a[mid:])
        (ans3, sorted) = mergecount(left, right)
        return (ans1 + ans2 + ans3, sorted)
```

New Problem. Implementing `mergecount(A, B)` in $O(n)$ time

- Given two sorted lists A, B
- Produce a single sorted list
- Count the number of “inverted pairs” (a, b) where $a \in A$, $b \in B$, $a > b$
NEW PROBLEM. implementing \texttt{mergecount}(A, B) in $O(n)$ time

- given two sorted lists A, B
- count the number of “inverted pairs” (a, b) where $a \in A$, $b \in B$, $a > b$

WARM-UP. similar to \texttt{merge}

- if $A[0] < B[0]$: peel off $A[0]$, contributes 0 inverted pairs
- if $A[0] > B[0]$: peel off $B[0]$, contributes $\text{len}(a)$ inverted pairs
THE END